88 research outputs found
Large-scale linkage analysis of 1302 affected relative pairs with rheumatoid arthritis
Rheumatoid arthritis is the most common systematic autoimmune disease and its etiology is believed to have both strong genetic and environmental components. We demonstrate the utility of including genetic and clinical phenotypes as covariates within a linkage analysis framework to search for rheumatoid arthritis susceptibility loci. The raw genotypes of 1302 affected relative pairs were combined from four large family-based samples (North American Rheumatoid Arthritis Consortium, United Kingdom, European Consortium on Rheumatoid Arthritis Families, and Canada). The familiality of the clinical phenotypes was assessed. The affected relative pairs were subjected to autosomal multipoint affected relative-pair linkage analysis. Covariates were included in the linkage analysis to take account of heterogeneity within the sample. Evidence of familiality was observed with age at onset (p << 0.001) and rheumatoid factor (RF) IgM (p << 0.001), but not definite erosions (p = 0.21). Genome-wide significant evidence for linkage was observed on chromosome 6. Genome-wide suggestive evidence for linkage was observed on chromosomes 13 and 20 when conditioning on age at onset, chromosome 15 conditional on gender, and chromosome 19 conditional on RF IgM after allowing for multiple testing of covariates
Covariate linkage analysis of GAW14 simulated data incorporating subclinical phenotype, sex, population, parent-of-origin, and interaction
BACKGROUND: We evaluate a method for the incorporation of covariates into linkage analysis using the Genetic Analysis Workshop 14 simulated data. Focusing on a randomly chosen replicate (42) we investigated the effect of the 12 subclinical phenotypes, sex, population, and parent-of-origin on the linkage signal from a model-free linkage analysis of Kofendrerd Personality Disorder. RESULTS: We detected a linkage peak on chromosome 1, at about 175 cM, which varied depending upon individuals' status for subclinical phenotype b. A linkage peak on chromosome 3 (310 cM) was found not to depend upon subclinical phenotype status. Further peaks were found on chromosomes 5 (12 cM), 9 (4 cM), and 10 (95 cM), depending on the status of subclinical phenotypes a, k, and c/d/g, respectively. CONCLUSION: Retrospective comparison of our results with the simulation model showed correct identification of disease loci D1-5 on chromosomes 1, 3, 5, 9 and 10, respectively
Analyses of single marker and pairwise effects of candidate loci for rheumatoid arthritis using logistic regression and random forests
Using parametric and nonparametric techniques, our study investigated the presence of single locus and pairwise effects between 20 markers of the Genetic Analysis Workshop 15 (GAW15) North American Rheumatoid Arthritis Consortium (NARAC) candidate gene data set (Problem 2), analyzing 463 independent patients and 855 controls. Specifically, our work examined the correspondence between logistic regression (LR) analysis of single-locus and pairwise interaction effects, and random forest (RF) single and joint importance measures. For this comparison, we selected small but stable RFs (500 trees), which showed strong correlations (r~0.98) between their importance measures and those by RFs grown on 5000 trees. Both RF importance measures captured most of the LR single-locus and pairwise interaction effects, while joint importance measures also corresponded to full LR models containing main and interaction effects. We furthermore showed that RF measures were particularly sensitive to data imputation. The most consistent pairwise effect on rheumatoid arthritis was found between two markers within MAP3K7IP2/SUMO4 on 6q25.1, although LR and RFs assigned different significance levels
Combining linkage data sets for meta-analysis and mega-analysis: the GAW15 rheumatoid arthritis data set
We have used the genome-wide marker genotypes from Genetic Analysis Workshop 15 Problem 2 to explore joint evidence for genetic linkage to rheumatoid arthritis across several samples. The data consisted of four high-density genome scans on samples selected for rheumatoid arthritis. We cleaned the data, removed intermarker linkage disequilibrium, and assembled the samples onto a common genetic map using genome sequence positions as a reference for map interpolation. The individual studies were combined first at the genotype level (mega-analysis) prior to a multipoint linkage analysis on the combined sample, and second using the genome scan meta-analysis method after linkage analysis of each sample. The two approaches were compared, and give strong support to the HLA locus on chromosome 6 as a susceptibility locus. Other regions of interest include loci on chromosomes 11, 2, and 12
Pooled DNA genotyping on Affymetrix SNP genotyping arrays
BACKGROUND: Genotyping technology has advanced such that genome-wide association studies of complex diseases based upon dense marker maps are now technically feasible. However, the cost of such projects remains high. Pooled DNA genotyping offers the possibility of applying the same technologies at a fraction of the cost, and there is some evidence that certain ultra-high throughput platforms also perform with an acceptable accuracy. However, thus far, this conclusion is based upon published data concerning only a small number of SNPs. RESULTS: In the current study we prepared DNA pools from the parents and from the offspring of 30 parent-child trios that have been extensively genotyped by the HapMap project. We analysed the two pools with Affymetrix 10 K Xba 142 2.0 Arrays. The availability of the HapMap data allowed us to validate the performance of 6843 SNPs for which we had both complete individual and pooled genotyping data. Pooled analyses averaged over 5–6 microarrays resulted in highly reproducible results. Moreover, the accuracy of estimating differences in allele frequency between pools using this ultra-high throughput system was comparable with previous reports of pooling based upon lower throughput platforms, with an average error for the predicted allelic frequencies differences between the two pools of 1.37% and with 95% of SNPs showing an error of < 3.2%. CONCLUSION: Genotyping thousands of SNPs with DNA pooling using Affymetrix microarrays produces highly accurate results and can be used for genome-wide association studies
Genetic Differences between Five European Populations
Aims: We sought to examine the magnitude of the differences in SNP allele frequencies between five European populations (Scotland, Ireland, Sweden, Bulgaria and Portugal) and to identify the loci with the greatest differences. Methods: We performed a population-based genome-wide association analysis with Affymetrix 6.0 and 5.0 arrays. We used a 4 degrees of freedom χ2 test to determine the magnitude of stratification for each SNP. We then examined the genes within the most stratified regions, using a highly conservative cutoff of p < 10–45. Results: We found 40,593 SNPs which are genome-wide significantly (p ≤ 10–8) stratified between these populations. The largest differences clustered in gene ontology categories for immunity and pigmentation. Some of the top loci span genes that have already been reported as highly stratified: genes for hair color and pigmentation (HERC2, EXOC2, IRF4), the LCT gene, genes involved in NAD metabolism, and in immunity (HLA and the Toll-like receptor genes TLR10, TLR1, TLR6). However, several genes have not previously been reported as stratified within European populations, indicating that they might also have provided selective advantages: several zinc finger genes, two genes involved in glutathione synthesis or function, and most intriguingly, FOXP2, implicated in speech development. Conclusion: Our analysis demonstrates that many SNPs show genome-wide significant differences within European populations and the magnitude of the differences correlate with the geographical distance. At least some of these differences are due to the selective advantage of polymorphisms within these loci
A genome-wide association study for late-onset Alzheimer's disease using DNA pooling
Background: Late-onset Alzheimer's disease (LOAD) is an age related neurodegenerative disease with a high prevalence that places major demands on healthcare resources in societies with increasingly aged populations. The only extensively replicable genetic risk factor for LOAD is the apolipoprotein E gene. In order to identify additional genetic risk loci we have conducted a genome-wide association (GWA) study in a large LOAD case – control sample, reducing costs through the use of DNA pooling. Methods: DNA samples were collected from 1,082 individuals with LOAD and 1,239 control subjects. Age at onset ranged from 60 to 95 and Controls were matched for age (mean = 76.53 years, SD = 33), gender and ethnicity. Equimolar amounts of each DNA sample were added to either a case or control pool. The pools were genotyped using Illumina HumanHap300 and Illumina Sentrix HumanHap240S arrays testing 561,494 SNPs. 114 of our best hit SNPs from the pooling data were identified and then individually genotyped in the case – control sample used to construct the pools. Results: Highly significant association with LOAD was observed at the APOE locus confirming the validity of the pooled genotyping approach. For 109 SNPs outside the APOE locus, we obtained uncorrected p-values ≤ 0.05 for 74 after individual genotyping. To further test these associations, we added control data from 1400 subjects from the 1958 Birth Cohort with the evidence for association increasing to 3.4 × 10-6 for our strongest finding, rs727153. rs727153 lies 13 kb from the start of transcription of lecithin retinol acyltransferase (phosphatidylcholine – retinol O-acyltransferase, LRAT). Five of seven tag SNPs chosen to cover LRAT showed significant association with LOAD with a SNP in intron 2 of LRAT, showing greatest evidence of association (rs201825, p-value = 6.1 × 10-7). Conclusion: We have validated the pooling method for GWA studies by both identifying the APOE locus and by observing a strong enrichment for significantly associated SNPs. We provide evidence for LRAT as a novel candidate gene for LOAD. LRAT plays a prominent role in the Vitamin A cascade, a system that has been previously implicated in LOAD
Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease
Background
1Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes.
Methodology
We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset.
Principal Findings
We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD.
Significance
Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimer's disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches
Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease
We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P ≤ 1 × 10−5. We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10−17; including ADGC data, meta P = 5.0 × 10−21) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10−14; including ADGC data, meta P = 1.2 × 10−16) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10−4; including ADGC data, meta P = 8.6 × 10−9), CD33 (GERAD+, P = 2.2 × 10−4; including ADGC data, meta P = 1.6 × 10−9) and EPHA1 (GERAD+, P = 3.4 × 10−4; including ADGC data, meta P = 6.0 × 10−10)
Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A
The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group
- …