4 research outputs found

    Tunable Chemokine Production by Antigen Presenting Dendritic Cells in Response to Changes in Regulatory T Cell Frequency in Mouse Reactive Lymph Nodes

    Get PDF
    BACKGROUND: Although evidence exists that regulatory T cells (Tregs) can suppress the effector phase of immune responses, it is clear that their major role is in suppressing T cell priming in secondary lymphoid organs. Recent experiments using two photon laser microscopy indicate that dendritic cells (DCs) are central to Treg cell function and that the in vivo mechanisms of T cell regulation are more complex than those described in vitro. PRINCIPAL FINDINGS: Here we have sought to determine whether and how modulation of Treg numbers modifies the lymph node (LN) microenvironment. We found that pro-inflammatory chemokines -- CCL2 (MCP-1) and CCL3 (MIP-la) -- are secreted in the LN early (24 h) after T cell activation, that this secretion is dependent on antigen-specific DC-T cell interactions, and that it was inversely related to the frequency of Tregs specific for the same antigen. Furthermore, we demonstrate that Tregs modify the chemoattractant properties of antigen-presenting DCs, which, as the frequency of Tregs increases, fail to produce CCL2 and CCL3 and to attract antigen-specific T cells. CONCLUSIONS: These results substantiate a major role of Tregs in LN patterning during antigen-specific immune responses

    Regulatory T cells target chemokine secretion by dendritic cells independently of their capacity to regulate T cell proliferation.

    No full text
    International audienceThe clinical manipulation of regulatory T cells (Tregs) represents a promising strategy for the regulation of unwanted immune responses. It is now becoming clear that Tregs exert multiple effects on different cell targets under particular conditions; however, the interplay between these different factors remains unclear. Using mouse Tregs of known Ag specificity, we report in this study two different levels of Treg-mediated suppression: one that targets T cell proliferation and one that targets dendritic cell-mediated proinflammatory chemokine (CCL3 and CCL4) production. These two effects can be dissociated, and whereas modulation of T cell proliferation depends on the strength of the antigenic stimulus, modulation of chemokine production by dendritic cells does not. We also provide evidence that the bystander effect of Tregs on immune responses observed in vivo may be in great part explained by a decrease in the recruitment of target T cells, and therefore in the magnitude of the response, rather than by a direct effect on their priming or proliferation. Overall, our results shed some light on the different aspects that need to be considered when attempting to modulate Tregs for clinical purposes
    corecore