10 research outputs found

    Novel NIR Spectroscopy Correlation Approach to Amino Acid Analysis of Soybean Proteins for Composition Improvements. (Version 2.0)

    Get PDF
    Amino acid NIR calibrations were developed in our Physical Chemistry of Foods Laboratory of the University of Illinois at Urbana for three selected amino acid groups that include essential amino acids for identified soybean accessions. Conventional “wet chemistry” analytical methods are time-consuming and costly. As a result, soybean breeders and researchers have an imperative need to utilize faster and less expensive methods. NIR Spectroscopy is a rapid and inexpensive method for composition analysis for academia and industry. Recent advancements in instrumentation design, such as the application of the Diode Array (DA) technique and the Fourier Transform (FT) IR and NIR techniques, have significantly improved overall instrument performance and advancement in the field of grain analysis. 

Novel results are presented for amino acid calibrations for US soybean accessions relevant to the food and agricultural industry.
&#xa

    Novel NIR Spectroscopy Correlation Approach to Amino Acid Analysis of Soybean Proteins for Composition Improvements. (v.3)

    Get PDF
    Amino acid NIR calibrations were developed in our Physical Chemistry of Foods Laboratory of the University of Illinois at Urbana for three selected amino acid groups that include essential amino acids for identified soybean accessions. Conventional “wet chemistry” analytical methods are time-consuming and costly. As a result, soybean breeders and researchers have an imperative need to utilize faster and less expensive methods. NIR Spectroscopy is a rapid and inexpensive method for composition analysis for academia and industry. Recent advancements in instrumentation design, such as the application of the Diode Array (DA) technique and the Fourier Transform (FT) IR and NIR techniques, have significantly improved overall instrument performance and advancement in the field of grain analysis. 

Novel results are presented for amino acid calibrations for US soybean accessions relevant to the food and agricultural industry.
&#xa

    Determination of Soybean Oil, Protein and Amino Acid Residues in Soybean Seeds by High Resolution Nuclear Magnetic Resonance (NMRS) and Near Infrared (NIRS)

    Get PDF
    A detailed account is presented of our high resolution nuclear magnetic resonance (HR-NMR) and near infrared (NIR) calibration models, methodologies and validation procedures, together with a large number of composition analyses for soybean seeds. NIR calibrations were developed based on both HR-NMR and analytical chemistry reference data for oil and twelve amino acid residues in mature soybeans and soybean embryos. This is our first report of HR-NMR determinations of amino acid profiles of proteins from whole soybean seeds, without protein extraction from the seed. It was found that the best results for both oil and protein calibrations were obtained with a Partial Least Squares Regression (PLS-1) analysis of our extensive NIR spectral data, acquired with either a DA7000 Dual Diode Array (Si and InGaAs detectors) instrument or with several Fourier Transform NIR (FT-NIR) spectrometers equipped with an integrating sphere/InGaAs detector accessory. In order to extend the bulk soybean samples calibration models to the analysis of single soybean seeds, we have analized in detail the component NIR spectra of all major soybean constituents through spectral deconvolutions for bulk, single and powdered soybean seeds. Baseline variations and light scattering effects in the NIR spectra were corrected, respectively, by calculating the first-order derivatives of the spectra and the Multiplicative Scattering Correction (MSC). The single soybean seed NIR spectra are broadly similar to those of bulk whole soybeans, with the exception of minor peaks in single soybean NIR spectra in the region from 950 to 1,000 nm. Based on previous experience with bulk soybean NIR calibrations, the PLS-1 calibration model was selected for protein, oil and moisture calibrations that we developed for single soybean seed analysis. In order to improve the reliability and robustness of our calibrations with the PLS-1 model we employed standard samples with a wide range of soybean constituent compositions: from 34% to 55% for protein, from 11% to 22% for oil and from 2% to 16% for moisture. Such calibrations are characterized by low standard errors and high degrees of correlation for all major soybean constituents. Morever, we obtained highly resolved NIR chemical images for selected regions of mature soybean embryos that allow for the quantitation of oil and protein components. Recent developments in high-resolution FT-NIR microspectroscopy extend the NIR sensitivity range to the picogram level, with submicron spatial resolution in the component distribution throughout intact soybean seeds and embryos. Such developments are potentially important for biotechnology applications that require rapid and ultra- sensitive analyses, such as those concerned with high-content microarrays in Genomics and Proteomics research. Other important applications of FT-NIR microspectroscopy are envisaged in biomedical research aimed at cancer prevention, the early detection of tumors by NIR-fluorescence, and identification of single cancer cells, or single virus particles in vivo by super-resolution microscopy/ microspectroscopy

    Transition, Integration and Convergence. The Case of Romania

    Full text link

    Irradiance characteristic of a small-scale solar simulator for testing thermal collectors

    No full text
    This paper describes the development of a small-scale solar simulator for research and educational purposes. The main goal is to provide a uniform and stable distribution of irradiation from a set of four floodlight halogen lamps, over a targeted area of 40x40 cm2. The floodlights are placed perpendicularly to each other, on the top end of a light tube. Two types of halogen lamps were characterised and the total irradiation of the solar simulator was measured over a 5x5 grid. The results showed that the two arrangements of lamps are able to achieve a level of 1000 W/m2 on the 40x40 cm2 targeted area, but the non-uniformity is unsatisfactory. In order to reach a non-uniformity level of 10% using the proposed lamps arrangements, the targeted area should be reduced to 31x31 cm2

    Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    No full text
    This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement

    Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    No full text
    This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement
    corecore