14 research outputs found

    Oxidative Stress and Cellular Senescence Are Involved in the Aging Kidney

    Full text link
    Chronic kidney disease (CKD) can be considered as a clinical model for premature aging. However, non‐invasive biomarkers to detect early kidney damage and the onset of a senescent phenotype are lacking. Most of the preclinical senescence studies in aging have been done in very old mice. Furthermore, the precise characterization and over-time development of age-related senes-cence in the kidney remain unclear. To address these limitations, the age-related activation of cellular senescence-associated mechanisms and their correlation with early structural changes in the kidney were investigated in 3- to 18-month-old C57BL6 mice. Inflammatory cell infiltration was ob-served by 12 months, whereas tubular damage and collagen accumulation occurred later. Early activation of cellular-senescence-associated mechanisms was found in 12-month-old mice, character-ized by activation of the DNA-damage-response (DDR), mainly in tubular cells; activation of the antioxidant NRF2 pathway; and klotho downregulation. However, induction of tubular-cell-cycle-arrest (CCA) and overexpression of renal senescent-associated secretory phenotype (SASP) components was only found in 18-month-old mice. In aging mice, both inflammation and oxidative stress (marked by elevated lipid peroxidation and NRF2 inactivation) remained increased. These findings support the hypothesis that prolonged DDR and CCA, loss of nephroprotective factors (klotho), and dysfunctional redox regulatory mechanisms (NRF2/antioxidant defense) can be early drivers of age-related kidney-damage progressionThis research was funded by grants from the Instituto de Salud Carlos III (ISCIII); Fondos FEDER European Union (PI17/00119, PI20/00140; and DTS20/00083 to M.R.-O.; PI18/01133 to A.M.R.); Sara Borrell’ program from Instituto de Salud Carlos III (ISCIII) (grant number CD20/00042 to R.R.R.-D.); Red de Investigación Renal REDINREN: RD16/0009/0003 and RICORS program to RICORS2040 496 (RD21/0005), to M.R.-O., Sociedad Española de Nefrología; “NOVELREN-CM: Enfermedad renal crónica: nuevas Estrategias para la prevención, Diagnóstico y tratamiento” (B2017/BMD3751 to M.R.-O.); “Convocatoria Dinamización Europa Investigación 2019” MINECO (EIN2019-103294 to M.R.-O.); Juan de la Cierva incorporacion grant: IJC2018-035187-I to S.R.-M.; innovation program under the Marie Skłodowska-Curie grant of the European Union’s Horizon 2020 (IMProvePD ID: 812699) to M.R.-O.; and Fundacion Conchita Rabago to L.T.-

    Acute Kidney Injury is Aggravated in Aged Mice by the Exacerbation of Proinflammatory Processes

    Get PDF
    Acute kidney injury (AKI) is more frequent in elderly patients. Mechanisms contributing to AKI (tubular cell death, inflammatory cell infiltration, impaired mitochondrial function, and prolonged cell-cycle arrest) have been linked to cellular senescence, a process implicated in regeneration failure and progression to fibrosis. However, the molecular and pathological basis of the age-related increase in AKI incidence is not completely understood. To explore these mechanisms, experimental AKI was induced by folic acid (FA) administration in young (3-months-old) and old (1-year-old) mice, and kidneys were evaluated in the early phase of AKI, at 48 h. Tubular damage score, KIM-1 expression, the recruitment of infiltrating immune cells (mainly neutrophils and macrophages) and proinflammatory gene expression were higher in AKI kidneys of old than of young mice. Tubular cell death in FA-AKI involves several pathways, such as regulated necrosis and apoptosis. Ferroptosis and necroptosis cell-death pathways were upregulated in old AKI kidneys. In contrast, caspase-3 activation was only found in young but not in old mice. Moreover, the antiapoptotic factor BCL-xL was significantly overexpressed in old, injured kidneys, suggesting an age-related apoptosis suppression. AKI kidneys displayed evidence of cellular senescence, such as increased levels of cyclin dependent kinase inhibitors p16ink4a and p21cip1, and of the DNA damage response marker γH2AX. Furthermore, p21cip1 mRNA expression and nuclear staining for p21cip1 and γH2AX were higher in old than in young FA-AKI mice, as well as the expression of senescence-associated secretory phenotype (SASP) components (Il-6, Tgfb1, Ctgf, and Serpine1). Interestingly, some infiltrating immune cells were p21 or γH2AX positive, suggesting that molecular senescence in the immune cells (“immunosenescence”) are involved in the increased severity of AKI in old mice. In contrast, expression of renal protective factors was dramatically downregulated in old AKI mice, including the antiaging factor Klotho and the mitochondrial biogenesis driver PGC-1α. In conclusion, aging resulted in more severe AKI after the exposure to toxic compounds. This increased toxicity may be related to magnification of proinflammatory-related pathways in older mice, including a switch to a proinflammatory cell death (necroptosis) instead of apoptosis, and overactivation of cellular senescence of resident renal cells and infiltrating inflammatory cells

    CCN2 Aggravates the Immediate Oxidative Stress–DNA Damage Response following Renal Ischemia–Reperfusion Injury

    No full text
    AKI, due to the fact of altered oxygen supply after kidney transplantation, is characterized by renal ischemia–reperfusion injury (IRI). Recent data suggest that AKI to CKD progression may be driven by cellular senescence evolving from prolonged DNA damage response (DDR) following oxidative stress. Cellular communication factor 2 (CCN2, formerly called CTGF) is a major contributor to CKD development and was found to aggravate DNA damage and the subsequent DDR–cellular senescence–fibrosis sequence following renal IRI. We therefore investigated the impact of CCN2 inhibition on oxidative stress and DDR in vivo and in vitro. Four hours after reperfusion, full transcriptome RNA sequencing of mouse IRI kidneys revealed CCN2-dependent enrichment of several signaling pathways, reflecting a different immediate stress response to IRI. Furthermore, decreased staining for γH2AX and p-p53 indicated reduced DNA damage and DDR in tubular epithelial cells of CCN2 knockout (KO) mice. Three days after IRI, DNA damage and DDR were still reduced in CCN2 KO, and this was associated with reduced oxidative stress, marked by lower lipid peroxidation, protein nitrosylation, and kidney expression levels of Nrf2 target genes (i.e., HMOX1 and NQO1). Finally, silencing of CCN2 alleviated DDR and lipid peroxidation induced by anoxia-reoxygenation injury in cultured PTECs. Together, our observations suggest that CCN2 inhibition might mitigate AKI by reducing oxidative stress-induced DNA damage and the subsequent DDR. Thus, targeting CCN2 might help to limit post-IRI AKI

    Cellular Senescence and the Kidney : Potential Therapeutic Targets and Tools

    No full text
    Chronic kidney disease (CKD) is an increasing health burden (affecting approximately 13.4% of the population). Currently, no curative treatment options are available and treatment is focused on limiting the disease progression. The accumulation of senescent cells has been implicated in the development of kidney fibrosis by limiting tissue rejuvenation and through the secretion of pro-fibrotic and pro-inflammatory mediators termed as the senescence-associated secretory phenotype. The clearance of senescent cells in aging models results in improved kidney function, which shows promise for the options of targeting senescent cells in CKD. There are several approaches for the development of "senotherapies", the most rigorous of which is the elimination of senescent cells by the so-called senolytic drugs either newly developed or repurposed for off-target effects in terms of selectively inducing apoptosis in senescent cells. Several chemotherapeutics and checkpoint inhibitors currently used in daily oncological practice show senolytic properties. However, the applicability of such senolytic compounds for the treatment of renal diseases has hardly been investigated. A serious concern is that systemic side effects will limit the use of senolytics for kidney fibrosis. Specifically targeting senescent cells and/or targeted drug delivery to the kidney might circumvent these side effects. In this review, we discuss the connection between CKD and senescence, the pharmacological options for targeting senescent cells, and the means to specifically target the kidney

    Seizure occurrence and the circadian rhythm of cortisol : A systematic review

    No full text
    Purpose: Stress is the seizure precipitant most often reported by patients with epilepsy or their caregivers. The relation between stress and seizures is presumably mediated by stress hormones such as cortisol, affecting neuronal excitability. Endogenous cortisol is released in a circadian pattern. To gain insight into the relation between the circadian rhythm of cortisol and seizure occurrence, we systematically reviewed studies on the diurnal distribution of epileptic seizures in children and adults and linked the results to the circadian rhythm of cortisol. Methods: A structured literature search was conducted to identify relevant articles, combining the terms 'epilepsy' and 'circadian seizure distribution', plus synonyms. Articles were screened using predefined selection criteria. Data on 24-hour seizure occurrence were extracted, combined, and related to a standard circadian rhythm of cortisol. Results: Fifteen relevant articles were identified of which twelve could be used for data aggregation. Overall, seizure occurrence showed a sharp rise in the early morning, followed by a gradual decline, similar to cortisol rhythmicity. The occurrence of generalized seizures and focal seizures originating from the parietal lobe in particular followed the circadian rhythm of cortisol. Conclusions: The diurnal occurrence of epileptic seizures shows similarities to the circadian rhythm of cortisol. These results support the hypothesis that circadian fluctuations in stress hormone level influence the occurrence of epileptic seizures

    Seizure occurrence and the circadian rhythm of cortisol : A systematic review

    No full text
    Purpose: Stress is the seizure precipitant most often reported by patients with epilepsy or their caregivers. The relation between stress and seizures is presumably mediated by stress hormones such as cortisol, affecting neuronal excitability. Endogenous cortisol is released in a circadian pattern. To gain insight into the relation between the circadian rhythm of cortisol and seizure occurrence, we systematically reviewed studies on the diurnal distribution of epileptic seizures in children and adults and linked the results to the circadian rhythm of cortisol. Methods: A structured literature search was conducted to identify relevant articles, combining the terms 'epilepsy' and 'circadian seizure distribution', plus synonyms. Articles were screened using predefined selection criteria. Data on 24-hour seizure occurrence were extracted, combined, and related to a standard circadian rhythm of cortisol. Results: Fifteen relevant articles were identified of which twelve could be used for data aggregation. Overall, seizure occurrence showed a sharp rise in the early morning, followed by a gradual decline, similar to cortisol rhythmicity. The occurrence of generalized seizures and focal seizures originating from the parietal lobe in particular followed the circadian rhythm of cortisol. Conclusions: The diurnal occurrence of epileptic seizures shows similarities to the circadian rhythm of cortisol. These results support the hypothesis that circadian fluctuations in stress hormone level influence the occurrence of epileptic seizures

    A novel undergraduate biomedical laboratory course concept in synergy with ongoing faculty research

    Get PDF
    Optimal integration of education and ongoing faculty research in many undergraduate science programs is limited to the capstone project. Here, we aimed to develop a novel course-based undergraduate research experience (CURE) in synergy with ongoing faculty research. This 10-week course called Biomedical Research Lab is embedded in the curriculum of the undergraduate program Biomedical Sciences and grounded in the theoretical framework of research-based learning. Four groups of four students work together in a dedicated laboratory on an actual ongoing research problem of faculty. All groups work on the same research problem, albeit from different (methodological) perspectives, thereby stimulating interdependence between all participants. Students propose new research, execute the experiments, and collectively report in a single research article. According to students, the course enhanced scientific, laboratory, and academic skills. Students appreciated ownership and responsibilities of the research, laboratory teachers as role models, and they were inspired and motivated by doing authentic actual research. The course resulted in a better understanding of what doing research entails. Faculty valued the didactical experience, research output and scouting opportunities. Since topics can change per course edition, we have showcased a widely applicable pedagogy creating synergy between ongoing research and undergraduate education

    CCN2 Aggravates the Immediate Oxidative Stress–DNA Damage Response following Renal Ischemia–Reperfusion Injury

    No full text
    AKI, due to the fact of altered oxygen supply after kidney transplantation, is characterized by renal ischemia–reperfusion injury (IRI). Recent data suggest that AKI to CKD progression may be driven by cellular senescence evolving from prolonged DNA damage response (DDR) following oxidative stress. Cellular communication factor 2 (CCN2, formerly called CTGF) is a major contributor to CKD development and was found to aggravate DNA damage and the subsequent DDR–cellular senescence–fibrosis sequence following renal IRI. We therefore investigated the impact of CCN2 inhibition on oxidative stress and DDR in vivo and in vitro. Four hours after reperfusion, full transcriptome RNA sequencing of mouse IRI kidneys revealed CCN2-dependent enrichment of several signaling pathways, reflecting a different immediate stress response to IRI. Furthermore, decreased staining for γH2AX and p-p53 indicated reduced DNA damage and DDR in tubular epithelial cells of CCN2 knockout (KO) mice. Three days after IRI, DNA damage and DDR were still reduced in CCN2 KO, and this was associated with reduced oxidative stress, marked by lower lipid peroxidation, protein nitrosylation, and kidney expression levels of Nrf2 target genes (i.e., HMOX1 and NQO1). Finally, silencing of CCN2 alleviated DDR and lipid peroxidation induced by anoxia-reoxygenation injury in cultured PTECs. Together, our observations suggest that CCN2 inhibition might mitigate AKI by reducing oxidative stress-induced DNA damage and the subsequent DDR. Thus, targeting CCN2 might help to limit post-IRI AKI

    Urinary KIM-1 Correlates with the Subclinical Sequelae of Tubular Damage Persisting after the Apparent Functional Recovery from Intrinsic Acute Kidney Injury

    No full text
    Acute kidney injury (AKI) poses an increased risk factor for new AKI episodes, progression to chronic kidney disease, and death. A worsened evolution has been linked to an incomplete renal repair beyond the apparent functional recovery based on plasma creatinine (pCr) normalization. However, structural sequelae pass largely unnoticed due to the absence of specific diagnostic tools. The urinary kidney injury molecule 1 (KIM-1) participates in renal tissue damage and repair and is proposed as a biomarker of early and subclinical AKI. Thus, we study in this paper the evolution of KIM-1 urinary excretion alongside renal tissue sequelae after an intrinsic AKI episode induced by cisplatin in Wistar rats. Creatinine clearance, pCr, proteinuria and the fractional excretion of Na+ and glucose were used to monitor renal function. Renal tissue damage was blindly scored in kidney specimens stained with hematoxylin–eosin and periodic acid–Schiff. KIM-1 urinary excretion and renal mRNA expression were also assessed. Finally, we analyzed urinary KIM-1 in patients apparently recovered from AKI. Our results show that, after the normalization of the standard markers of glomerular filtration and tubular function, the extent of persistent histological findings of tissue repair correlates with the renal expression and urinary level of KIM-1 in rats. In addition, KIM-1 is also elevated in the urine of a significant fraction of patients apparently recovered from an AKI. Besides its potential utility in the early and subclinical diagnosis of renal damage, this study suggests a new application of urinary KIM-1 in the non-invasive follow-up of renal repair after AKI
    corecore