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Acute kidney injury (AKI) is more frequent in elderly patients. Mechanisms contributing
to AKI (tubular cell death, inflammatory cell infiltration, impaired mitochondrial function,
and prolonged cell-cycle arrest) have been linked to cellular senescence, a process
implicated in regeneration failure and progression to fibrosis. However, the molecular
and pathological basis of the age-related increase in AKI incidence is not completely
understood. To explore these mechanisms, experimental AKI was induced by folic
acid (FA) administration in young (3-months-old) and old (1-year-old) mice, and
kidneys were evaluated in the early phase of AKI, at 48 h. Tubular damage score,
KIM-1 expression, the recruitment of infiltrating immune cells (mainly neutrophils and
macrophages) and proinflammatory gene expression were higher in AKI kidneys of old
than of young mice. Tubular cell death in FA-AKI involves several pathways, such as
regulated necrosis and apoptosis. Ferroptosis and necroptosis cell-death pathways
were upregulated in old AKI kidneys. In contrast, caspase-3 activation was only found
in young but not in old mice. Moreover, the antiapoptotic factor BCL-xL was
significantly overexpressed in old, injured kidneys, suggesting an age-related
apoptosis suppression. AKI kidneys displayed evidence of cellular senescence,
such as increased levels of cyclin dependent kinase inhibitors p16ink4a and
p21cip1, and of the DNA damage response marker γH2AX. Furthermore, p21cip1
mRNA expression and nuclear staining for p21cip1 and γH2AX were higher in old than
in young FA-AKI mice, as well as the expression of senescence-associated secretory
phenotype (SASP) components (Il-6, Tgfb1, Ctgf, and Serpine1). Interestingly, some
infiltrating immune cells were p21 or γH2AX positive, suggesting that molecular
senescence in the immune cells (“immunosenescence”) are involved in the
increased severity of AKI in old mice. In contrast, expression of renal protective
factors was dramatically downregulated in old AKI mice, including the antiaging factor
Klotho and the mitochondrial biogenesis driver PGC-1α. In conclusion, aging resulted
in more severe AKI after the exposure to toxic compounds. This increased toxicity may
be related to magnification of proinflammatory-related pathways in older mice,

Edited by:
Shrikant R. Mulay,

Central Drug Research Institute
(CSIR), India

Reviewed by:
Julian Aurelio Marschner,

Hospital of the University of Munich,
Germany

Takamasa Iwakura,
Hamamatsu University School of

Medicine, Japan
Santosh Kumar Goru,

St. Michael’s Hospital, Canada

*Correspondence:
Marta Ruiz-Ortega

mruizo@fjd.es

Specialty section:
This article was submitted to

Renal Pharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 31 January 2021
Accepted: 03 June 2021
Published: 22 June 2021

Citation:
Marquez-Exposito L,

Tejedor-Santamaria L,
Santos-Sanchez L, Valentijn FA,

Cantero-Navarro E, Rayego-Mateos S,
Rodrigues-Diez RR, Tejera-Muñoz A,

Marchant V, Sanz AB, Ortiz A,
Goldschmeding R and Ruiz-Ortega M

(2021) Acute Kidney Injury is
Aggravated in Aged Mice by the

Exacerbation of
Proinflammatory Processes.

Front. Pharmacol. 12:662020.
doi: 10.3389/fphar.2021.662020

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6620201

ORIGINAL RESEARCH
published: 22 June 2021

doi: 10.3389/fphar.2021.662020

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.662020&domain=pdf&date_stamp=2021-06-22
https://www.frontiersin.org/articles/10.3389/fphar.2021.662020/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.662020/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.662020/full
http://creativecommons.org/licenses/by/4.0/
mailto:mruizo@fjd.es
https://doi.org/10.3389/fphar.2021.662020
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.662020


including a switch to a proinflammatory cell death (necroptosis) instead of apoptosis,
and overactivation of cellular senescence of resident renal cells and infiltrating
inflammatory cells.

Keywords: aging, necroptosis, apoptosis, cellular senescence, inflammation, immunosenescence, klotho, acute
kidney injury

INTRODUCTION

Acute kidney injury (AKI) is a common and devastating
pathologic condition in part due its higher incidence in the
elderly and its association with an increased short- and long-
term mortality (Levey and James, 2017; Hounkpatin et al., 2019;
Martin-Cleary et al., 2019; Logan et al., 2020). Moreover, AKI is
closely related to chronic kidney disease (CKD) as AKI may
accelerate CKD progression to end-stage renal disease (ESRD)
and CKD predisposes to AKI (Venkatachalam et al., 2015; Siew
et al., 2016; Ruiz-Ortega et al., 2020). All these facts underscore
the importance of the research in this area. Furthermore, the
cellular and molecular mechanisms of the increased sensitivity to
AKI in elderly patients are incompletely understood (Mehran
et al., 2019; Infante et al., 2020; Aleckovic-Halilovic et al., 2021),
hampering the design of any preventive or therapeutic
approaches.

Kidney tubular cells comprise the bulk of the kidney cell mass
and may be injured by hypoxia, toxic compounds, metabolic
disorders and proteinuria, among other factors. In response to an
insult, tubular epithelial cells undergo phenotype changes
associated with tubular function impairment and activation of
inflammatory, fibrotic and cell death pathways, which may reflect
a state of cellular senescence (Linkermann et al., 2014; Ruiz-
Ortega et al., 2020). The initial phase of AKI is followed by a
recovery phase characterized by activation of protective and
regenerative mechanisms that restore epithelial properties and
functions in surviving cells (Yang et al., 2010). Tubular cell death
in AKI can involve several cell death pathways, such as apoptosis
and regulated necrosis (Linkermann and Green, 2014). Cells
dying by regulated necrosis release intracellular molecules,
called damage-associated molecular patterns (DAMPs), which
amplify the inflammatory response by the activation of
neutrophils and other immune cells in a process termed
necroinflammation. There are several forms of regulated
necrosis, including necroptosis, ferroptosis, and pyroptosis
(Newton and Manning, 2016). Necroptosis, the best-
characterized form of regulated apoptosis, is elicited by the
binding of the receptor-interacting protein 1 (RIPK1) to
RIPK3, leading to its oligomerization and
autophosphorylation. Then, the active RIPK1-RIPK3 complex
(also called necrosome) activates the pseudokinase mixed lineage
kinase domain-like protein (MLKL), which translocates to the
cellular membrane, causing cell membrane permeabilization,
rupture, and subsequent cell death (Newton and Manning,
2016). Necroptosis plays an important role in experimental
AKI, as described in renal ischemia/reperfusion injury (IRI),
folic acid (FA)-AKI and cisplatin nephropathy (Linkermann
et al., 2013; Linkermann and Green, 2014; Xu et al., 2015;

Martin-Sanchez et al., 2017; Martin-Sanchez et al.,2018a).
Ferroptosis, a caspase-independent cell death pathway, is
characterized by reduced glutathione activity or content,
reduced glutathione peroxidase 4 (GPX4) protein levels,
massive lipid peroxidation and cell loss (Martin-Sanchez et al.,
2020). Targeting ferroptosis by chemical inhibition or gene
expression modulation reduced tubular injury and improved
renal function in different experimental models, including IRI
and FA-AKI (Martin-Sanchez et al., 2017; Martin-Sanchez et al.,
2020).

Cellular senescence represents a maladaptive response to AKI,
characterized by prolonged cell-cycle arrest (Melk et al., 2004;
Bonventre, 2014; Gorgoulis et al., 2019). Following an initial
insult, DNA damage activates a protective mechanism consisting
in the arrest of the cell cycle and the activation of the DNA
damage response (DDR) to facilitate DNA repair. After successful
DNA repair, cells re-enter the cell cycle (Branzei and Foiani,
2008). Nevertheless, persistent activation of this protective
mechanism can contribute to damage, as observed in disease
conditions associated with cellular senescence (Gire and Dulic,
2015). Regarding the kidney, accumulation of senescent (in
particular tubular epithelial) cells has been implicated in
regeneration failure and AKI-to-CKD transition (Schmitt and
Cantley, 2008; O’Sullivan et al., 2017; Kim et al., 2019). In this
sense, prolonged tubular epithelial cell-cycle arrest, sustained
inflammation, and impaired mitochondrial function can
contribute to CKD progression (Levey and James, 2017;
Andrade et al., 2018; Sato and Yanagita, 2018; Jiang et al.,
2020). Cellular senescence or premature aging in the kidney is
characterized by increased expression of some cell-cycle-related
molecules such as the cyclin kinase inhibitors p16ink4a, p21cip,
and p53 (Melk et al., 2004; Andrade et al., 2018; Knoppert et al.,
2019; Koyano et al., 2019). Senescent cells are also characterized
by a detrimental secretome known as senescence-associated
secretory phenotype (SASP) (Melk et al., 2004; Bonventre,
2014). This secretome is enriched with pro-inflammatory
cytokines, growth factors and profibrotic proteins such as IL-6,
TGF-β, CTGF/CCN2 and PAI-1 (Acosta et al., 2013; Zhou et al.,
2020) and is able to spread the senescence phenotype to
neighboring cells (paracrine senescence) (Acosta et al., 2013),
and to promote kidney fibrosis (Ferlicot et al., 2003; Melk et al.,
2004; McGlynn et al., 2009; Yang et al., 2010; Günther et al., 2017;
Valentijn et al., 2018). While inflammation is one of the first steps
in tissue repair, persistent inflammation contributes to CKD
progression (Cao et al., 2015; Rabb et al., 2016; Sato and
Yanagita, 2018). Cytokines and interleukins within the SASP
contribute to enduring inflammation and to further tubular cell
injury and dysfunction (Kirkland and Tchkonia, 2017).
Moreover, a low-grade inflammatory milieu is known to be
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present in the aged tissues, a condition named “inflammaging”
(Greene and Loeser, 2015; Rea et al., 2018). “Immunosenescence”
is a related concept, in which the dysfunctional immune response
in the elderly presents characteristics related to cellular
senescence and promotes inflammation, thus playing a crucial
role in inflammaging (Sato and Yanagita, 2019; Schroth et al.,
2020).

In the present study, we sought to elucidate the potential
cellular and molecular mechanisms contributing to the increased
severity of AKI in old age. To this aim, we have investigated
whether aging-related processes, such as induction of cellular
senescence, inflammaging and loss of renal protective factors, can
modulate tubular damage, including cell death pathways
activation and phenotype changes induced by AKI. Previous
experimental studies have reported age-related exacerbation of
renal injury in different AKI models. Now, we have investigated
the FA-AKI model that presents a different mechanism of kidney
injury (crystalluria with intratubular obstruction) than those in
prior studies (cytokine storm) or on exogenous (cisplatin) or
endogenous (heme) molecules that are directly toxic to tubular
cells (Maddens et al., 2012; Nath et al., 2013; Wen et al., 2015).
Aging is a process that has no fixed start date and does not occur
suddenly. Rather, human glomerular filtration rate starts
decreasing progressively from age 18–24 years (Wetzels et al.,
2007). Most previous experimental studies on AKI and aging used
mice from 15 to 18 months old (Maddens et al., 2012; Nath et al.,
2013; Wen et al., 2015). However, in a sepsis AKI model an
increase in mortality was already observed at 12 months
(Maddens et al., 2012). Therefore, this time point was chosen
to investigate early age-associated changes that could be
responsible for increased AKI susceptibility.

MATERIALS AND METHODS

Experimental Model of Acute Kidney Injury
Induced by Toxins
C57BL/6 mice were originally obtained from JAX™ Mice
(Charles River Europe laboratory) and then the mouse colony
breeding was maintained in the Fundación Jimenez Diaz Animal
facilities, following JAX™ recommendations (Jackson
Laboratory, 2007). Animals were fed with a standard diet
provided by the animal facilities. Young (3-month-old) and
old (1-year-old) C57BL/6 male mice were injected
intraperitoneally with 125 mg/kg folic acid (FA) dissolved in
sodium bicarbonate. Body weight was similar in young and
old mice (26.1 g in young vs. 29.8 g in older mice). Previous
studies have demonstrated that the lethal dose for FA (lethality
dependent on AKI) varies by more than 3-fold in different mouse
strains (Parchure et al., 1985). In addition, in a sepsis AKI model
has reported lethality at 12 months (Maddens et al., 2012).
Therefore, to decrease the high risk of death in old mice, we
used a lower FA dose than in prior studies (125 mg/kg instead of
250 mg/kg) (Linkermann et al., 2013; Martin-Sanchez et al.,
2018a), and mice of 12 months. As observed in results, this
dose induced a significant tubular damage with no death
associated at this time point. Five to ten mice per group were

studied in the early phase of AKI, after 48 h of FA injection.
Untreated mice of the same age were used as their corresponding
controls.

Animals were euthanatized by CO2 inhalation. The kidneys
were perfused in situ with saline before removal, and half of each
kidney (2/4) was fixed, embedded in paraffin, and used for
immunohistochemistry, while the rest was snap-frozen in
liquid nitrogen for renal cortex RNA and protein studies.
Kidneys from all groups were compared to control kidneys
from young mice, expressing results as fold-change over
control values of 1.

Protein Studies
Total proteins were isolated from frozen kidney tissue using an
appropriate lysis buffer as previously described (Rodrigues-Diez
et al., 2013) and quantified using a BCA protein assay kit
(ThermoScientific). Proteins (50 μg) were separated on 8–15%
acrylamide gels using the SDS-PAGE, as described (Rodrigues-
Diez et al., 2013). Briefly, after electrophoresis, samples were
transferred on to polyvinylidenedifluoride membranes
(Millipore) blocked in TBS containing 0.1% Tween 20 (TBST)
and 5% dry non-fat milk for 1 h at room temperature and
incubated in the same buffer with different primary antibodies
overnight at 4°C. After washing with TBST, membranes were
incubated with the appropriate HRP (horseradish peroxidase)-
conjugated secondary antibody (Invitrogen) 1 h at room
temperature and developed using an ECL kit (Amersham
Biosciences). Results were analyzed by LAS 4,000 and
Amersham Imager 600 (GEHealthcare) and densitometered by
Quantity One software (Biorad). The following primary
antibodies were employed [dilution]: MLKL ([1:1,000],
ab172868, abcam), α-tubulin ([1:5,000], T5168, Sigma-Aldrich)
and α-Cleaved Caspase 3 ([1:1,000, #9661S, Cell Signaling). The
evaluation of IL-6 in kidney tissue was done by ELISA (BD
Biosciences, Cat. No. 555240) following the instructions provided
by the manufacturer.

Histology and Immunohistochemistry
Paraffin-embedded kidney sections were stained using standard
histology procedures, as described elsewhere (Rodrigues-Diez
et al., 2013). Tubular damage and inflammatory infiltrate were
scored as arbitrary units on periodic acid-Schiff (PAS, Sigma-
Aldrich) stained slides as previously described (Zoja et al., 2002).
Immunostaining was carried out in 3 μm thick tissue sections.
Antigens were retrieved using the PTlink system (DAKO) with
sodium citrate buffer (10 mM) adjusted to pH 6–9, depending on
the immunohistochemical marker. Endogenous peroxidase was
blocked. Tissue sections were incubated for 1 h at room
temperature with 1X Casein Solution (Vector Laboratories) to
eliminate non-specific protein binding sites. Primary antibodies
were incubated overnight at 4°C and diluted in antibody solution
(DAKO). Specific HRP-conjugated (DAKO) or biotinylated
secondary antibodies (Amersham Biosciences) were used for
1 h followed by Avidin-Biotin Complex incubation (Vector
Laboratories). Signal was developed with substrate solution
and 3,3-diaminobenzidine as a chromogen (Abcam). Then
sections were counterstained with Carazzi’s haematoxylin
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(Richard Allan Scientific). The primary antibodies used were
[dilution]: KIM-1 ([1:500]; AF 1817, R&D), P21 ([1:2,000,
Ab188224, Abcam), γH2AX [1:1,000], NB1002280 Novus
Biological), BCL-xL ([1:4,000], ab178844, Abcam), F4/80 ([1:
50]; MCA497, Bio-Rad), CD3 ([1:100], A0452, DAKO),
Myeloperoxidase ([1X], IS511, DAKO) and 4-Hydroxynonenal
([1:1,000], Ab46545, Abcam). Specificity was checked by
omission of primary antibodies (not shown). Quantification
was made by using the Image-Pro Plus software (Maryland,

United States) determining the positive staining area relative
to the total area or counting positive staining manually (in the
case of inflammatory cells), in 5–10 randomly chosen fields (×
200 magnification).

Gene Expression Studies
RNA from renal cortex was isolated with TriPure reagent
(Roche). cDNA was synthesized by a High Capacity cDNA
Archive kit (Applied Biosystems) using 2 μg of total RNA and

FIGURE 1 | Histological characterization of renal lesions in the acute phase of the folic acid nephropathy in young and old mice. Folic Acid (FA; 125 mg/kg) was
injected in 3-months-old (Young) and 1-year-old (Old) C57BL/6 mice and kidneys were studied after 48 h. The morphological lesions were evaluated by Periodic Acid-
Schiff stained kidney sections. (A) Figure shows representative micrographs from each group and the quantification, from 0 to 4, of (B) tubular damage and (C)
inflammatory infiltrate. Scale bars � 100 μm. Data are shown as arbitrary units and expressed as mean ± SD of n � 6–8 animals per group. *p < 0.05 vs. control
young mice, #p < 0.05 vs. FA-injected young mice, &p < 0.05 vs. control old mice. The non-parametric Kruskal-Wallis statistical test was performed.
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following the manufacturer’s instructions. Quantitative gene
expression analysis was performed on an AB7500 fast real-
time PCR system (Applied Biosystems) using fluorogenic
TaqMan MGB probes and primers designed by Assay-on-
Demand™ gene expression products. Mouse assays IDs were:
p21cip1: Mm00432448_m, p16ink4a: Mm00494449_m1, Klotho:
Mm00502002_m1, Bcl2l1 Mm004337783_m1, Il6
Mm00446190_m1, Lcn2 Mm01324470_m1, Havcr1 o Kim1:
Mm00506686_m1, Ctgf/Ccn2: Mm01192933_g1, Ccl-2:
Mm00441242_m1, Ppargc1a: Mm01208835_m1, Tgfβ1:
Mm01178820, Mlkl: Mm01244219_m1, Ripk3:
Mm00444947_m1, Serpine1: Mm00435858_m1, Ccl5:
Mm01302428_m1, Cxcl1: Mm04207460_m1, Cxcl2:
Mm00436450_m1, Cxcl5: Mm00436451_m1, Cxcl10:
Mm00445235_m1, and Gpx4: Mm00515041_m1. Data were

normalized to Gapdh: Mm99999915_g1. The mRNA copy
numbers were calculated for each sample by the instrument
software using Ct value (“arithmetic fit point analysis for the
lightcycler”). Results were expressed in n-fold, calculated relative
to young mice control group after normalization against Gapdh.

Statistical Analysis
Results are expressed as n-fold increase with respect to the
average of young control mice as mean ± standard deviation of
the mean (±SD). The Shapiro-Wilk test was used to evaluate
sample Normality distribution. If the samples followed the
Gaussian distribution, a one-way ANOVA followed by the
corresponding post-hoc analyses, were used. To compare non-
parametric samples, a Kruskal-Wallis and a subsequent post-
hoc analysis was performed. Statistical analysis was conducted

FIGURE 2 | The damage biomarker KIM-1 is overexpressed in injured tubules of old mice. Folic Acid (FA; 125 mg/kg) was injected in 3-months-old (Young) and 1-
year-old (Old) C57BL/6 mice and kidneys were studied after 48 h. (A) Total mRNA was isolated from frozen sections of whole kidneys and qRT-PCR was performed to
determine gene expression levels of Havcr-1. (B) Representative microphotographs of KIM-1 expression levels evaluated by immunohistochemistry and (C) its
quantification of stained area per total area. Scale bars � 100 μm. Data are shown as n-fold and expressed asmean ± SD of n � 6–9 animals per group. *p < 0.05 vs.
control young mice, #p < 0.05 vs. FA-injected young mice, &p < 0.05 vs. control old mice. The non-parametric Kruskal-Wallis statistical test was performed.
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using GraphPad Prism 8.0 (GrahPad Software, San Diego
California United States). Values of p < 0.05 were
considered statistically significant.

RESULTS

Experimental AKI Induced by Folic Acid
Administration is Characterized by More
Severe Tubular Injury and Inflammatory Cell
Infiltration in Old Mice.
Kidney injury was studied 48 h after the injection of a low dose
(125 mg/kg) of FA to young (3-months-old) and old (1-year-old)
mice. The morphological changes showed that FA administration
induced tubular injury was more severe in old than in young mice
(Figures 1A,B). Moreover, in FA-treated mice the recruitment of
inflammatory cells in the kidney was higher in old than in young
mice (Figures 1A,C).

Tubular damage was further evaluated at molecular levels by
studying the gene expression levels of the tubular injury
biomarker Havcr-1, that encodes the KIM-1 protein (Beker
et al., 2018; Griffin et al., 2019; Gohda et al., 2020). Havcr-1/
KIM-1 is an early marker of kidney injury in rodent AKI
induced by IRI or nephrotoxic drugs (Bignon et al., 1976;
Amin et al., 2004; Prozialeck et al., 2007). Kidney Havcr-1
gene expression was increased in FA-induced AKI in both
young and old mice (Figure 2A). In control young kidneys,
KIM-1 protein expression was minimal (Figures 2B,C).
However, in FA-injured kidneys apical KIM-1 staining was
observed (Figure 2B), in accordance with previous studies
(Han et al., 2002). Importantly, the quantification of KIM-1
staining showed dramatically higher tubular KIM-1 protein
expression levels in old than in young injured kidneys
(Figure 2C).

To further characterize the kidney infiltrating cells,
immunohistochemistry was done using specific markers of
neutrophils (Mieloperoxidase), macrophages (F4/80 + cells)
and T-lymphocytes (CD3+ cells) (Figure 3A). Infiltration by
neutrophils, monocytes/macrophages and CD3+ T cells was
significantly higher in old than in young mice with FA-
induced AKI (Figures 3B–D). Next, changes in gene
expression of key inflammatory markers were evaluated by
qRT-PCR in mouse kidneys. There were no differences in
gene expression levels of proinflammatory factors between
young and old control mice. In contrast, all of them were
increased in response to FA administration both in young and
old mice compared to untreated mice (Figure 4). The
proinflammatory marker Lcn2, which encodes the kidney
damage biomarker N-GAL (Wang et al., 2007), and the
chemokine Cxcl1, which plays a key role in neutrophil
recruitment (Chung and Lan, 2011), were significantly
upregulated in FA kidneys from old compared to AKI young
ones (Figure 4). In addition, other cytokines and chemokines,
such as Ccl2 and Cxcl2 were also higher in old vs. young FA
kidneys, but no differences were found in the case of Ccl5 and
Cxcl10 (Figure 4).

Ferroptosis is Increased in Old Folic
Acid-Induced Acute Kidney Injury When
Compared to Young Folic Acid Kidneys
Ferroptosis is a regulated death pathway involved in the first wave
of death in FA-AKI (Martin-Sanchez et al., 2017). To determine if
ferroptosis was overactivated in response to FA administration in
old mice, lipid peroxidation, a final ferroptosis target, was
evaluated by HNE immunohistochemistry. An increase in
HNE staining was found in FA-injected kidneys from old
mice compared to young ones (Figure 5A). GPX4 reduction
was previously described in FA-AKI (Martin-Sanchez et al.,
2017). However, gene expression levels of Gpx4 were not
diminished in young FA-kidneys at the low dose used in the
present study, whereas in old mice there was a slight, but not
significant, diminution of Gpx4 mRNA levels (Figure 5B).

Necroptosis Components are
Overexpressed in Response to Folic Acid
Administration in Old Mice.
Necroptosis is a cell death pathway associated with
inflammation (Newton and Manning, 2016). The renal
expression of the main components of the necroptosis
pathway was evaluated in the AKI model. Renal Ripk3 and
Mlkl gene expression levels were increased in FA-injected
mice compared to controls, as previously described (Figures
6A,B) (Martin-Sanchez et al., 2017; Martin-Sanchez et al.,
2018a). These increases were markedly higher in old mice
showing a significantly higher gene expression of both
markers (Figure 6A), as well as MLKL total protein
expression (Figures 6C,D).

Apoptosis is not Involved in the Folic
Acid-Acute Kidney Injury severity Observed
in Old Mice Compared to Young Mice.
Apoptosis is also involved in FA-AKI (Justo et al., 2006). As
previously described, activation of caspase 3 was found during
AKI in young mice, as evidenced by increased levels of mature
caspase 3 (Justo et al., 2006). However, this was not the case for old
mice with AKI, in whom active caspase 3 was not increased (Figures
6E,F). These data would suggest a possible switch of AKI-induced cell
death pathway from a non-inflammatory apoptotic cell death to a
proinflammatory necroptosis cell death in old age.

Molecular Senescence is Activated in Acute
Kidney Injury and Exacerbated in Old Mice
Cellular senescence was induced in the early phase of FA-AKI, as
observed by increased gene expression levels of the cyclin
dependent kinase inhibitors p16ink4a and p21cip1 at 48 h
(Figures 7A,B). Importantly, p16ink4a and p21cip1
upregulation was exacerbated by aging, evidenced by higher
expression in old than in young FA-injured kidneys (Figures
7A,B). Moreover, nuclear p21cip1 immunostaining was observed
in FA-injected mice (Figures 7C,D) and the number of p21cip1
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FIGURE 3 | Characterization of inflammatory infiltrate in the acute phase of folic acid (FA) nephropathy in young and old mice. Folic Acid (FA; 125 mg/kg) was
injected in 3-months-old (Young) and 1-year-old (Old) C57BL/6 mice and kidneys were studied after 48 h. Inflammatory cell infiltration was evaluated using antibodies
against myeloperoxidase (neutrophils), F4/80 (monocytes/macrophages/dendritic cells) and CD3 (T lymphocytes). (A) Representative micrographs from each group.
Scale bars � 100 μm. (B–D) Quantification of MPO (B), F4/80 (C), and CD3 (D) positive cells. Data are shown as n-fold and expressed as mean ± SD of n � 6–9
animals per group. *p < 0.05 vs. control youngmice, #p < 0.05 vs. FA-injected youngmice, &p < 0.05 vs. control old mice. The parametric one-way ANOVA statistical test
was performed.
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FIGURE 4 | Kidney expression of proinflammatory genes in the acute phase of folic acid (FA) nephropathy in young and old mice. Folic Acid (FA; 125 mg/kg) was
injected in 3-months-old (Young) and 1-year-old (Old) C57BL/6 mice. Kidneys were studied after 48 h and qRT-PCR was performed to assess Lcn2 (A), Ccl2 (B), Ccl5
(C), Cxcl1 (D), Cxcl2 (E), Cxcl5 (F), and Cxcl10 (G) gene expression levels. Data are shown as n-fold and expressed as mean ± SD of n � 6–9 animals per group.
*p < 0.05 vs. control young mice, #p < 0.05 vs. FA-injected young mice, &p < 0.05 vs. control old mice. The parametric one-way ANOVA statistical test was
performed.
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positive nuclei was significantly higher in old than in young FA-
injured kidneys (Figure 7E). To further analyze senescent-related
mechanisms, the DNA damage response marker γH2AX was
evaluated. In response to FA administration, nuclear γH2AX
expression was also increased in both young and old mice and
showed a higher upregulation in old mice (Figures 7F–H).
Interestingly, some infiltrating immune cells were also p21cip1
or γH2AX positive (Figures 7C,D,F,G), suggesting that
immunosenescence and inflammaging are involved in the
aggravated AKI response to FA in old mice.

Another feature of senescent cells is the increased production
of SASP. The analysis of the gene expression levels of SASP
components Tgfβ1, Il6, Ctgf/Ccn2 and Serpine1 (which encodes
PAI-1) and the IL-6 protein levels assayed by ELISA, in the early
phase of AKI, showed that all of the evaluated SASP components
were higher in old AKI mice compared to the young ones
(Figures 8A–E).

Senescent cells are protected from apoptosis (Knoppert et al.,
2019). Here, the antiapoptotic factor BCL-xL, an important B-cell
lymphoma 2 (BCL-2) family member central to senescent cell
apoptosis resistance (Chang et al., 2016; Yosef et al., 2016) was
evaluated at gene (Bcl2l1) and protein (BCL-xL) levels. Both
Bcl2l1 gene and BCL-xL protein expression levels were
upregulated in injured kidneys of old mice compared to the
young ones (Figures 8F–H). Interestingly, overexpression of
BCL-xL was observed in old control mice compared to young
mice (Figures 8G,H).

Age-Related Loss of Protective Factors
Klotho is an anti-aging protein of kidney origin that is lost
very early in the course of AKI or CKD (Moreno et al., 2011;
Fernandez-Fernandez et al., 2018; Sanchez-Niño et al., 2019;
Fernández-Fernández et al., 2020). As expected, klotho gene
downregulation was found in FA-induced AKI of young mice

FIGURE 5 | Ferroptosis death pathway is significantly increased in FA-induced AKI in old vs. young mice. Folic Acid (FA; 125 mg/kg) was injected in 3-months-old
(Young) and 1-year-old (Old) C57BL/6 and kidneys were studied after 48 h (A, B) 4-Hidroxynonenal (HNE) immunohistochemistry was performed. (A) Representative
pictures from each group and (B) the quantification of stained area per total area was performed. (C) Renal gene expression levels of Gpx4 were studied by qRT-PCR.
Scale bars � 100 μm. Data are expressed as mean ± SD of n � 6–9 animals per group. *p < 0,05 vs. Young mice control. The non-parametric Kruskal-Wallis
statistical test was performed.
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and in control and FA-AKI old kidneys (Figure 9A).
Interestingly, kidney klotho mRNA levels were far lower in
old FA-injected mice that in young FA-injected mice
(Figure 9A), suggesting that klotho is a key target gene in
AKI in the elderly. PGC-1α is a master regulator of
mitochondrial biogenesis with anti-inflammatory and

protective functions (Fontecha-Barriuso et al., 2019;
Fontecha-barriuso et al., 2020). There was no change in
kidney PGC-1α expression at gene level (named Ppargc1a) in
young FA-injected mice at the lower than usual FA dose used,
whereas decreased levels were found in control old kidney and a
further downregulation in old FA kidneys (Figure 9B).

FIGURE 6 | Upregulation of the necroptosis pathway in the acute phase of folic acid (FA) nephropathy in old and young mice. Folic Acid (FA; 125 mg/kg) was
injected in 3-months-old (Young) and 1-year-old (Old) C57BL/6mice and kidneys were studied after 48 h. The renal gene expression levels ofRipk3 (A) andmlkl (B)were
evaluated by qRT-PCR. (C–F)MLKL protein and active caspase-3 (represented by cleaved caspase-3) were determined byWestern blot. α-tubulin was used as loading
control. (C, E) Representative blots and (D, F) their quantification. Data are shown as n-fold and expressed as mean ± SD of n � 5–9 animals per group. *p < 0.05
vs. control young mice, #p < 0.05 vs. FA-injected young mice, &p < 0.05 vs. control old mice. The parametric one-way ANOVA statistical test was performed.
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FIGURE 7 | Kidney expression of cell-cycle arrest and DDRmarkers pathway in the acute phase of folic acid (FA) nephropathy in old and youngmice. Folic Acid (FA; 125 mg/kg)
was injected in 3-months-old (Young) and 1-year-old (Old) C57BL/6mice and kidneyswere studied after 48 h (A, B)Kidney p16ink4a (A) and p21cip1 (B) gene expression levels. (C–E)
p21cip1 immunohistochemistry was conducted. (C) Representative microphotographs of p21cip1 showing nuclear staining and (D) detail of a FA-injured old mouse kidney showing
positive nuclear p21cip1 staining. (E)Nuclear p21cip1 quantification. (F–H) γH2AX immunohistochemistry was performed. (F)Representativemicrographs of γH2AX and (G) detail
of a FA-injured oldmouse kidney showingpositive nuclearγH2AXstaining. (H)NuclearγH2AXquantification. Red arrows indicate positive nuclear staining. ScaleBars� 100 μm.Data are
expressed asmean ± SD of n � 6–9 animals per group. *p < 0.05 vs. control youngmice, #p < 0.05 vs. FA-injected youngmice, &p < 0.05 vs. control oldmice. The parametric one-way
ANOVA statistical test was performed, except for γH2AX quantification, in which a non-parametric Kruskal-Wallis statistical test was conducted.
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FIGURE 8 | Increased expression of senescence-associated secretory phenotype components (SASP) and anti-apoptotic proteins in old injured kidneys. Folic
Acid (FA; 125 mg/kg) was injected in 3-months-old (Young) and 1-year-old (Old) C57BL/6 mice and kidneys were studied after 48 h. Gene expression levels of Il6 (A),
Tgfβ (C), Serpine1 (D), and Ctgf (E) were determined by qRT-PCR. (B) Total protein of renal extracts of IL-6 were evaluated by ELISA. (F) Gene expression levels of
Bcl2l1 were evaluated by qRT-PCR. (G, H) BCL-xL protein was evalated by immunohistochemistry. (G) Representative microphotographs of BCL-xL and (H) its
quantification of stained area per total area. Data are shown as n-fold and expressed as mean ± SD of n � 6–9 animals per group. *p < 0.05 vs. control young mice,
#p < 0.05 vs. FA-injected young mice, &p < 0.05 vs. control old mice. The parametric one-way ANOVA statistical test was performed, except for the BCL-xL
quantification, in which a non-parametric Kruskal-Wallis statistical test was conducted.
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DISCUSSION

The studies done in the murine model of AKI by exposure to the
toxic compound FA revealed increased acute tubular damage in

aging mice. Similarly, more severe drug-related AKI effects in
elderly subjects have been described in humans (Metz-Kurschel
et al., 1990; Khan et al., 2017), supporting the relevance of this
experimental model to explore kidney disease (Miyauchi, 1991;

FIGURE 9 | Loss of protective factors in old kidneys is exacerbated in response to folic-acid (FA) administration. Folic Acid (FA; 125 mg/kg) was injected in 3-
months-old (Young) and 1-year-old (Old) C57BL/6 mice and kidneys were studied after 48 h. Kidney Klotho (A) and Ppargc1a (B) gene expression levels were assessed
by qRT-PCR. Data are shown as n-fold and expressed as mean ± SD of n � 6-9 animals per group. *p < 0.05 vs. control young mice, #p < 0.05 vs. FA-injected young
mice, &p < 0.05 vs. control old mice. The parametric one-way ANOVA statistical test was performed.

FIGURE 10 | Proposed mechanisms involved in aging-related FA-AKI increased susceptibility. In response to FA injury, aging kidneys present an increase of KIM-1
expression, indicator of tubular damage, lower levels of nephroprotective factors and immunosenescent infiltrating cells. The tubular cell damage can be lethal; in FA-
aging kidneys there is an activation of inflammatory forms of cell death, such as necroptosis and ferroptosis, as well as an inhibition of apoptosis. In aging kidneys, injured
tubular cells change their phenotype to a proinflammatory and senescent one, being IL-6 one of the most upregulated cytokines. These cellular and molecular
changes may partially underlie the age-related increased susceptibility to developing more severe AKI in response to FA.

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 66202013

Marquez-Exposito et al. Senescence, Inflammation and Kidney Damage

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Fan et al., 2017; Montgomery et al., 2017). The characterization of
acute tubular damage at molecular level reveals an exacerbation of
the tubular injury marker KIM-1 in old mice. The observations
regarding the mechanisms triggered by AKI point to an age-
related magnification of several proinflammatory-related
processes, including gene overexpression of some
proinflammatory factors (Lcn-2, Cxcl1, and Il-6),
overactivation of inflammatory-cell-death pathways such as
necroptosis, and amplification of cellular senescence including
immunosenescence (Figure 10). Moreover, our experimental
data, showing an exacerbation of renal damage in 12-months-
old mice associated with the loss of renal protective factors,
support the idea that age-associated susceptibility to AKI may
start earlier than previously thought.

After an ischemic or nephrotoxic AKI insult, a wide range of
pathophysiological events occur, including changes in tubular cell
phenotypes, such as loss of physical cell–cell interactions and
partial epithelial-to-mesenchymal transition (EMT) (Ruiz-
Ortega et al., 2020), or even tubular cell death mediated by
apoptosis and prominent programmed and unprogrammed
necrosis (Martin-Sanchez et al., 2018b; Martin-Sanchez et al.,
2018a). The proximal tubular cell is an important target of AKI
(Chevalier, 2016), as we have confirmed in the FA model by de
novo expression of the tubular damage biomarker KIM-1 in these
cells. Some reports have found a lack of difference in initial
severity of IRI, as described by no changes in tubular injury score,
between aged and young mice after 1 day post IRI (Sato et al.,
2016; Kim et al., 2019), whereas in our model of low-dose of FA-
induced AKI, we found an exacerbated increase in KIM-1 positive
tubular cells in old mice. Accordingly, in other murine AKI
models induced by kidney exposure to toxic compounds, such
as heme proteins (Nath et al., 2013), cisplatin (Wen et al., 2015) or
bacteria inoculation (Maddens et al., 2012), a significant tubular
damage in the acute phase was also described in old mice,
showing age-related predisposition of tubular injury in
response to toxic-induced damage.

Injured tubular cells are an important source of
proinflammatory cytokines and chemokines, which
contribute to the amplification of the inflammatory response
(Liu et al., 2018). In this sense, FA-injected old murine kidneys
presented a synergistic upregulation of proinflammatory genes,
such as Lcn-2, Cxcl1, and Il-6, that codify cytokines and
chemokines involved in the recruitment of infiltrating
immune cells in the kidney. Previous experimental studies
have also investigated the inflammatory response in the
initial phase of AKI in old mice. In the IRI model, the
number of macrophages significantly increased after 1 day in
both young and aged mice (Kim et al., 2019), as found in other
models of toxic exposure (Nath et al., 2013; Wen et al., 2015).
These data clearly indicate that the combination of advanced age
and exposure to toxics or ischemia induces an exacerbated
innate inflammatory response in the injured kidney at this
acute time point and suggest an increased susceptibility of
the elderly to AKI. In addition, in the IRI model,
exacerbation of immune response and changes in
macrophage phenotypes is involved in the AKI-to-CKD
transition (Kim et al., 2019).

Many evidences in humans indicate that the elderly exhibit
low-grade systemic chronic inflammation even in healthy
conditions (Goronzy and Weyand, 2013; Franceschi and
Campisi, 2014). Moreover, aging-related dysregulation of
several innate and acquired immune responses have been
described (Goronzy and Weyand, 2013; Montecino-Rodriguez
et al., 2013; Franceschi and Campisi, 2014), and in human kidney
transplant patients, aged donor kidneys were observed to attract
more infiltrating inflammatory cells than young ones (Øien et al.,
2007). Inflammaging of the kidney has also been demonstrated by
a microarray analysis of human samples (Rodwell et al., 2004).
However, no significant renal changes were found at gene level for
proinflammatory factors in healthy old (12 month) mice.
Outstandingly, a magnification of the FA-AKI-induced pro-
inflammatory response was observed in aging mice, which
could be either a cause or a consequence of increased tubular
damage. Among the proinflammatory mediators potentially
involved in AKI exacerbation, IL-6 has special relevance. We
have found that Il-6 gene expression was synergistically
upregulated in FA-AKI in old mice, as previously described in
a model of hemoglobin-induced AKI (Nath et al., 2013). Since IL-
6 is a proinflammatory cytokine and a SASP component,
targeting IL-6 or its downstream signaling could be an
interesting therapeutic option in AKI in the elderly.

Tubular cell death is a feature of AKI and both apoptosis and
regulated necrosis pathways are activated during FA-AKI (Sanz
et al., 2008; Martin-Sanchez et al., 2017; Martin-Sanchez
et al.,2018a). Caspase 3 activation is a central event in
apoptosis (Justo et al., 2006; Linkermann et al., 2013; Martin-
Sanchez et al., 2018a). In the present study, FA-AKI was
associated with caspase 3 activation in young but not in old
mice. In cultured tubular epithelial cells, inhibition of caspases is
known to switch the mode of cell death induced by inflammatory
cytokines from apoptosis to necrosis pathways (Justo et al., 2006;
Martin-Sanchez et al., 2018a). In accordance with the latter, lack
of caspase 3 activation in old FA-AKI mice was associated with
evidence of involvement of the necroptosis pathway, i.e., RIPK3
and MLKL upregulation. This is a key difference to point out
between young and old FA-AKI mice in our study, since
apoptosis is a non-inflammatory form of cell death while
necroptosis promotes inflammation (Martin-Sanchez et al.,
2018b). In addition, ferroptosis is also overactivated in old
FA-AKI, as shown by increased lipid peroxidation. Treatment
with Ferrostatin-1, a ferroptosis inhibitor, prevented the
inflammatory response and the expression of necroptotic
proteins in FA-injected mice (Martin-Sanchez et al., 2017;
Martin-Sanchez et al., 2018a), showing that this form of cell
death is also related to inflammation. The observed
downmodulation of apoptosis in old FA mice is also in line
with the induction of a senescent phenotype of tubular cells in
injured kidneys, since senescent cells are characteristically
protected from apoptosis (Knoppert et al., 2019). These results
are supported by the increased baseline and post-FA-induced
AKI expression of the antiapoptotic protein BCL-xL showed in
old, but not in young mice. In summary, our findings indicate an
aging-related change in cell death mechanisms linked to
increased tubular injury, characterized by an activation of
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proinflammatory cell death pathways (necroptosis and
ferroptosis) and suppression of non-inflammatory cell death
pathways (apoptosis) (Figure 10).

As mentioned above, regulated necrosis can also contribute to
age-related amplification of AKI-induced renal inflammatory
response. Thereby, DAMPs released by necrotic cells can
produce innate immunity cell-derived cytokines by the
activation of identical pattern recognition receptors, such as
Toll-like receptors expressed on tissue-resident or infiltrating
immune cells (Ujiie, 1989; Wu et al., 2007; Kurts et al., 2013).
DAMP-associated inflammation is one of the earliest processes
following AKI and contributes to an amplification of the loop of
cell death/inflammation (Mulay et al., 2016b). Among the
immune cells, some studies have demonstrated that
macrophages actively participate in necroptosis (Linkermann
et al., 2014; Mulay et al., 2016a). In this sense, in the model of
IRI, the gene deletion of RIPK3 or MLKL reduced macrophage
infiltration and NLRP3 inflammasome activation (Chen et al.,
2018). Our results demonstrated that the number of infiltrating
macrophages was significantly higher in old FA-injected kidneys
associated with an overexpression of the necroptosis components
RIPK3 or MLKL, supporting an exacerbation of necroptosis-
macrophage inflammatory pathway in aging AKI mice.

Apart from kidney pathologies, necroptosis-mediated
inflammation plays an important role in a variety of age-
related diseases such as Alzheimer’s disease, Parkinson’s
disease, and atherosclerosis (Royce et al., 2019). Some studies
have found an association of age-related increase in DAMPs
circulating levels, such as mitochondrial DNA or high mobility
group protein B1 (Davalos et al., 2013; Pinti et al., 2014), with
circulating proinflammatory cytokines (TNF-α, IL-6) in humans,
suggesting that DAMPs might play a role in low-grade systemic
chronic inflammation described in the elderly (Goronzy and
Weyand, 2013; Franceschi and Campisi, 2014). In the same
way, some experimental data support a relation between
necroptosis and inflammaging. For example, accelerated aging
Cu/Zn superoxide dismutase (Sod1) deficient mice that exhibit
increased levels of circulating proinflammatory cytokines (Zhang
et al., 2013; Deepa et al., 2019) had elevated MLKL protein and
gene expression in adipose tissue at 9 months compared with age-
matched wild type mice (Royce et al., 2019). Although we have
found increased inflammatory cell infiltration in the old mice
kidneys, the evaluation of key components of the necroptosis
pathway, such as RIPK3 or MLKL, in 1-year old C57BL/6 mice
showed no changes at gene and protein levels in healthy kidneys
compared to young ones, suggesting that there is no age-related
activation of necroptosis in our experimental conditions.

Cellular senescence may occur as a result of cell-cycle arrest
due to increased expression of cyclin kinase inhibitors (Knoppert
et al., 2019). Previous studies in different AKI models have
described a rapid upregulation of p21cip1 expression in the
early phase of AKI (Megyesi et al., 1998; Yu et al., 2005;
Hodeify et al., 2011). Accordingly, we found increased
expression of p21cip1 and p16ink4a in FA-AKI mice. Some
studies have proposed that p21cip1 prevents DNA-damaged
cells from entering the cell cycle by directly inhibiting CDK2
activity (Yu et al., 2005), thus avoiding cell death by necrosis or

apoptosis (Megyesi et al., 1998). Indeed, p21cip1 knockout mice
showed increased susceptibility to AKI mediated by ischemia or
nephrotoxins (Megyesi et al., 1998; Megyesi et al., 2001; Nishioka
et al., 2014). In contrast, the model of renal ablation in p21cip1
knockout mice presented diminished cell-cycle arrest,
amelioration of renal dysfunction and lower interstitial fibrosis
(Megyesi et al., 1999). On the other hand, renal p21cip1 is
essential for the beneficial effects of renal ischemic
preconditioning (Nishioka et al., 2014). Moreover, distinct
types and severity of kidney injury can behave differently
regarding cell-cycle arrest (Yang et al., 2010). Therefore, the
functional consequences of p21cip1 expression are cell and
disease context specific. In the present study, renal p21cip1
mRNA expression and tubular p21cip1 nuclear staining were
significantly higher in old FA-induced AKI than in young mice.
Furthermore, the DNA damage response marker γH2AXwas also
significantly activated in old AKI mice, showing mainly nuclear
positive staining in tubular cells. Similarly, activation of
prolonged cell-cycle arrest have also been reported in other
experimental AKI models, but in this case, linked to fibrosis
(Yang et al., 2010). In IRI-AKI mice, treatment with a p53
inhibitor has demonstrated the importance of G1 cell-cycle
arrest in the progression of fibrosis (Lim et al., 2018). Another
mechanism involved in senescence-mediated renal damage is
related to the induction of SASP in injured tubular cells (Acosta
et al., 2013). Here, we observed that in FA-induced AKI there was
a significant increase in SASP gene expression (including Tgfβ1,
Ctgf/Ccn2, Il6, and Serpine-1) in old mouse kidneys. Taken
together, this data suggests that there is a magnification of the
senescence phenotype in aged AKI mice (Figure 10).
Interestingly, our results showed that in old murine injured
kidneys, also some infiltrating immune cells were p21cip1 or
γH2AX positive, suggesting molecular senescence in the immune
cells in the aging kidney may be involved in the aggravated AKI
response to FA in old mice (Figure 10). Although the exact cause
of inflammaging is not known, cellular senescence (Campisi and
D’Adda Di Fagagna, 2007) and immune senescence (Franceschi
et al., 2000; McElhaney and Effros, 2009) have been proposed to
play a key role in this process.

Finally, yet another remarkable finding was the reduced
expression of nephroprotective factors Klotho and PGC-1α
and their dramatic further downregulation induced by AKI in
old mice. Klotho is normally expressed and secreted by
tubular cells and has anti-aging, anti-inflammatory and
anti-fibrotic properties (Kuro-o et al., 1997; Kurosu et al.,
2005; Sanchez-Niño et al., 2013). Klotho downregulation can
be both a consequence and driver of inflammaging in kidney
disease (Moreno et al., 2011; Izquierdo et al., 2012;
Fernandez-Fernandez et al., 2018; Sanchez-Niño et al.,
2019; Fernández-Fernández et al., 2020). For example,
Klotho protects endothelial cells from senescence
(Carracedo et al., 2012). PGC-1α is the master regulator
of mitochondrial biogenesis and PGC-1α deficiency is known
to promote spontaneous kidney inflammation and to
increase the severity of AKI (Fontecha-Barriuso et al.,
2019; Fontecha-barriuso et al., 2020). Thus, the loss of the
nephroprotective factors Klotho and PCG-1α due to ageing
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could contribute to an increased inflammatory and fibrotic
response to FA-AKI.

In conclusion, our data indicate that aging kidneys lose
local nephroprotective factors and reveal a switch to a
proinflammatory cell death (necroptosis and ferroptosis)
instead of apoptosis (Figure 10), associated to a synergistic
upregulation of several proinflammatory (Lcn-2 and Cxcl1)
and SASP mediators, such as IL-6. Moreover, these changes
may partially underlie the age-related increased susceptibility
to developing more severe AKI in response to toxic
compounds, as clearly showed by a dramatic increase of
KIM-1 expressing tubular cells (Figure 10). Another
characteristic of severe AKI in aging kidneys includes the
induction of cellular senescence in intrinsic renal cells and
inflammatory cells. These features could interfere with the
resolution of acute injury and favor the AKI-to-CKD
transition. All these data point out the relevance of
investigating the effects of senolytic drugs on cell-death
pathways involved in AKI. Better understanding of
inflammaging and immunosenescence could contribute to
identifying prevention and/or intervention points to mitigate
the structural and functional impairment of the kidneys in
elderly people. Given the increasing frequency of AKI in the
elderly, this information may help to come up with age-specific
interventions to prevent or treat kidney injury in this age group.
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