8,914 research outputs found
Thermal equilibrium of two quantum Brownian particles
The influence of the environment in the thermal equilibrium properties of a
bipartite continuous variable quantum system is studied. The problem is treated
within a system-plus-reservoir approach. The considered model reproduces the
conventional Brownian motion when the two particles are far apart and induces
an effective interaction between them, depending on the choice of the spectral
function of the bath. The coupling between the system and the environment
guarantees the translational invariance of the system in the absence of an
external potential. The entanglement between the particles is measured by the
logarithmic negativity, which is shown to monotonically decrease with the
increase of the temperature. A range of finite temperatures is found in which
entanglement is still induced by the reservoir.Comment: 8 pages, 1 figur
Optimal irreversible stimulated emission
We studied the dynamics of an initially inverted atom in a semi-infinite
waveguide, in the presence of a single propagating photon. We show that atomic
relaxation is enhanced by a factor of 2, leading to maximal bunching in the
output field. This optimal irreversible stimulated emission is a novel
phenomenon that can be observed with state-of-the-art solid-state atoms and
waveguides. When the atom interacts with two one-dimensional electromagnetic
environments, the preferential emission in the stimulated field can be
exploited to efficiently amplify a classical or a quantum state.Comment: 9 pages, 6 figure
Magnetometer suitable for Earth field measurement based on transient atomic response
We describe the development of a simple atomic magnetometer using Rb
vapor suitable for Earth magnetic field monitoring. The magnetometer is based
on time-domain determination of the transient precession frequency of the
atomic alignment around the measured field. A sensitivity of 1.5 nT/
is demonstrated on the measurement of the Earth magnetic field in the
laboratory. We discuss the different parameters determining the magnetometer
precision and accuracy and predict a sensitivity of 30 pT/Comment: 6 pages, 5 figure
Dual-mode CMOS analog front-end (AFE) for electrical impedance spectroscopy (EIS) systems
This paper presents the operation of a dualmode wideband CMOS analog front-end (AFE) for electrical impedance spectroscopy. The chip combines two current-readout (CR) channels and four voltage-readout (VR) channels suitable for both bipolar and tetrapolar EIS analysis. The chip addresses the need for flexible readout units for real-time simultaneous single-cell and large scale tissue/organ analysis. Postlayout simulations show that the VR channel is capable of wideband operation up to 12 MHz with noise floor as low as 16.4 nV/Hz1/2. A 2-bit control allows to select between a high-frequency low-gain channel and a bandwidth-limited high-gain channel. Each VR channel occupies an area of 0.48 mm2. The CR channel is capable of 80 dB of dynamic range, by converting currents between 1 nA to 10μA, while achieving a noise floor of 1.4 pA/Hz1/2. An automatic gain control (AGC) unit can be enabled in order maintain the sensor signal within the ADC dynamic range. Each CR channel occupies an area of 0.21 mm2. The chip consumes between 290 μA and 690 μA per channel and operates from a 1.8 V supply. The chip will be part of a fully flexible and configurable dual-mode EIS systems for impedance sensors and bioimpedance analysis
A Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification
Optical transport represents a natural route towards fast communications, and
it is currently used in large scale data transfer. The progressive
miniaturization of devices for information processing calls for the microscopic
tailoring of light transport and confinement at length scales appropriate for
the upcoming technologies. With this goal in mind, we present a theoretical
analysis of a one-dimensional Fabry-Perot interferometer built with two highly
saturable nonlinear mirrors: a pair of two-level systems. Our approach captures
non-linear and non-reciprocal effects of light transport that were not reported
previously. Remarkably, we show that such an elementary device can operate as a
microscopic integrated optical rectifier
Universal optimal broadband photon cloning and entanglement creation in one dimensional atoms
We study an initially inverted three-level atom in the lambda configuration
embedded in a waveguide, interacting with a propagating single-photon pulse.
Depending on the temporal shape of the pulse, the system behaves either as an
optimal universal cloning machine, or as a highly efficient deterministic
source of maximally entangled photon pairs. This quantum transistor operates
over a wide range of frequencies, and can be implemented with today's
solid-state technologies.Comment: 5 pages, 3 figure
- …