9,666 research outputs found

    Management of the Rice Tungro Virus Vector \u3ci\u3eNephotettix virescens\u3c/i\u3e (Homoptera: Cicadellidae) with Controlled-Release Formulations of Carbofuran

    Get PDF
    Field trials were conducted in lowland flooded rice in the Philippines to evaluate a number of carbofuran controlled-release formulations in comparison with commercial formulations. The test formulations were based on a biodegradable matrix of pine kraft lignin and were used as granules of different sizes and also in the form of small strips. The release rates were assessed under field conditions by bioassaying rice plants in the field, using adult rice green leafhopper, Nephotettix virescens Distant. The lignin formulations with a high level of active ingredient (15–45% by weight) gave as good or better control than the commercial 3% granules in tests based on three application techniques: broadcast into the floodwater, soil incorporation, and root zone injection. The improvements in control levels of green leafhoppers were most marked with soil incorporation and root zone application. The best lignin-based formulation reduced levels of tungro virus infection from 23% for a conventional flowable carbofuran formulation to 1.0% at an application rate of 0.5 kg (AI)/ha. At the same rate, the grain yield was increased from 3.56 t/ha to 5.5 t/ha, using the controlled-released formulation

    Quantum anisotropic Heisenberg chains with superlattice structure: a DMRG study

    Full text link
    Using the density matrix renormalization group technique, we study spin superlattices composed of a repeated pattern of two spin-1/2 XXZ chains with different anisotropy parameters. The magnetization curve can exhibit two plateaus, a non trivial plateau with the magnetization value given by the relative sizes of the sub-chains and another trivial plateau with zero magnetization. We find good agreement of the value and the width of the plateaus with the analytical results obtained previously. In the gapless regions away from the plateaus, we compare the finite-size spin gap with the predictions based on bosonization and find reasonable agreement. These results confirm the validity of the Tomonaga-Luttinger liquid superlattice description of these systems.Comment: 6 pages, 6 figure

    Quartic Horndeski Cartan theories in a FLRW Universe

    Full text link
    We consider the Quartic Horndeski theory with torsion on a FLRW background in the second order formalism. We show that there is a one parameter family of Quartic Horndeski Cartan Lagrangians and all such theories only modify the dispersion relations of the graviton and the scalar perturbation that are usually found in the standard Horndeski theory on a torsionless spacetime. In other words, for the theories in this class torsion does not induce new degrees of freedom but it only modifies the propagation. We also show that for most Lagrangians within the family of Quartic Horndeski Cartan theories the dispersion relation of the scalar mode is radically modified. We find only one theory within the family whose scalar mode has a regular wave-like dispersion relation

    Stability of nonsingular Cosmologies in Galileons with Torsion. A No-Go for eternal subluminality

    Full text link
    Generic models in Galileons or Horndeski theory do not have cosmological solutions that are free of instabilities and singularities in the entire time of evolution. We extend this No-Go theorem to a spacetime with torsion. On this more general geometry the No-Go argument now holds provided the additional hypothesis that the graviton is also subluminal throughout the entire evolution. Thus, critically different for Galileons' stability on a torsionful spacetime, an arguably unphysical although arbitrarily short (deep UV) phase occurring at an arbitrary time, when the speed of gravity (cg)(c_g) is slighlty higher than luminal (c)(c), and by at least an amount (cg2c)(c_g\geq \,\sqrt{2\,c} ), can lead to an all-time (linearly) stable and nonsingular cosmology. As a proof of principle we build a stable model for a cosmological bounce that is almost always subluminal, where the short-lived superluminal phase occurs before the bounce and that transits to General Relativity in the asymptotic past and future.Comment: 7 pages, 4 figure

    Line and Continuum Variability in Active Galaxies

    Full text link
    We compared optical spectroscopic and photometric data for 18 AGN galaxies over 2 to 3 epochs, with time intervals of typically 5 to 10 years. We used the Multi-Object Double Spectrograph (MODS) at the Large Binocular Telescope (LBT) and compared the spectra to data taken from the SDSS database and the literature. We find variations in the forbidden oxygen lines as well as in the hydrogen recombination lines of these sources. For 4 of the sources we find that, within the calibration uncertainties, the variations in continuum and line spectra of the sources are very small. We argue that it is mainly the difference in black hole mass between the samples that is responsible for the different degree of continuum variability. In addition we find that for an otherwise constant accretion rate the total line variability (dominated by the narrow line contributions) reverberates the continuum variability with a dependency ΔLline(ΔLcont.)32\Delta L_{line} \propto (\Delta L_{cont.})^{\frac{3}{2}}. Since this dependency is prominently expressed in the narrow line emission it implies that the luminosity dominating part of the narrow line region must be very compact with a size of the order of at least 10 light years. A comparison to literature data shows that these findings describe the variability characteristics of a total of 61 broad and narrow line sources.Comment: 30 pages including the appendix, 18 figures including the appendix. Accepted 2015 September 3. Received 2015 August 24; in original form 2015 July 3 in Monthly Notices of the Royal Astronomical Societ

    Spin-dependent beating patterns in thermoelectric properties: Filtering the carriers of the heat flux in a Kondo adatom system

    Full text link
    We theoretically investigate the thermoelectric properties of a spin-polarized two-dimensional electron gas hosting a Kondo adatom hybridized with an STM tip. Such a setup is treated within the single-impurity Anderson model in combination with the atomic approach for the Green's functions. Due to the spin dependence of the Fermi wavenumbers the electrical and thermal conductances, together with thermopower and Lorenz number reveal beating patterns as function of the STM tip position in the Kondo regime. In particular, by tuning the lateral displacement of the tip with respect to the adatom vicinity, the temperature and the position of the adatom level, one can change the sign of the Seebeck coefficient through charge and spin. This opens a possibility of the microscopic control of the heat flux analogously to that established for the electrical current
    corecore