5 research outputs found

    The protoMIRAX Hard X-ray Imaging Balloon Experiment

    Full text link
    The protoMIRAX hard X-ray imaging telescope is a balloon-borne experiment developed as a pathfinder for the MIRAX satellite mission. The experiment consists essentially in a coded-aperture hard X-ray (30-200 keV) imager with a square array (13×\times13) of 2mm-thick planar CZT detectors with a total area of 169 cm2^2. The total, fully-coded field-of-view is 21∘×21∘21^{\circ}\times 21^{\circ} and the angular resolution is 1∘^{\circ}43'. In this paper we describe the protoMIRAX instrument and all the subsystems of its balloon gondola, and we show simulated results of the instrument performance. The main objective of protoMIRAX is to carry out imaging spectroscopy of selected bright sources to demonstrate the performance of a prototype of the MIRAX hard X-ray imager. Detailed background and imaging simulations have been performed for protoMIRAX balloon flights. The 3σ\sigma sensitivity for the 30-200 keV range is ~1.9 ×\times 10−5^{-5} photons cm−2^{-2} s−1^{-1} for an integration time of 8 hs at an atmospheric depth of 2.7 g cm−2^{-2} and an average zenith angle of 30∘^{\circ}. We have developed an attitude control system for the balloon gondola and new data handling and ground systems that also include prototypes for the MIRAX satellite. We present the results of Monte Carlo simulations of the camera response at balloon altitudes, showing the expected background level and the detailed sensitivity of protoMIRAX. We also present the results of imaging simulations of the Crab region. The results show that protoMIRAX is capable of making spectral and imaging observations of bright hard X-ray source fields. Furthermore, the balloon observations will carry out very important tests and demonstrations of MIRAX hardware and software in a near space environment.Comment: 9 pages, 13 figures, accepted for publication in Astronomy & Astrophysic

    XIPE: the X-ray Imaging Polarimetry Explorer

    Full text link
    X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017 but not selected. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus and two additional GPDs filled with pressurized Ar-DME facing the sun. The Minimum Detectable Polarization is 14 % at 1 mCrab in 10E5 s (2-10 keV) and 0.6 % for an X10 class flare. The Half Energy Width, measured at PANTER X-ray test facility (MPE, Germany) with JET-X optics is 24 arcsec. XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil).Comment: 49 pages, 14 figures, 6 tables. Paper published in Experimental Astronomy http://link.springer.com/journal/1068
    corecore