2,586 research outputs found
Biomass partitioning and gas exchange parameters in different Musa cultivars as influenced by natural shade
Poster presented at Tropentag 2011 Development on the Margin. Bonn (Germany), 3-7 Oct 2011
A holistic approach to enhance the use of neglected and underutilized species: the case of Andean grains in Bolivia and Peru
The IFAD-NUS project, implemented over the course of a decade in two phases, represents the first UN-supported global effort on neglected and underutilized species (NUS). This initiative, deployed and tested a holistic and innovative value chain framework using multi-stakeholder, participatory, inter-disciplinary, pro-poor gender- and nutrition-sensitive approaches. The project has been linking aspects often dealt with separately by R&D, such as genetic diversity, selection, cultivation, harvest, value addition, marketing, and final use, with the goal to contribute to conservation, better incomes, and improved nutrition and strengthened livelihood resilience. The project contributed to the greater conservation of Andean grains and their associated indigenous knowledge, through promoting wider use of their diversity by value chain actors, adoption of best cultivation practices, development of improved varieties, dissemination of high quality seed, and capacity development. Reduced drudgery in harvest and postharvest operations, and increased food safety were achieved through technological innovations. Development of innovative food products and inclusion of Andean grains in school meal programs is projected to have had a positive nutrition outcome for targeted communities. Increased income was recorded for all value chain actors, along with strengthened networking skills and self-reliance in marketing. The holistic approach taken in this study is advocated as an effective strategy to enhance the use of other neglected and underutilized species for conservation and livelihood benefits
The response of Musa cultivar root systems to a tree shade gradient
Poster presented at Tropentag 2011 - Development on the Margin. Bonn (Germany), 3-7 Oct 2011
Two spatially separated phases in semiconducting RbFeS
We report neutron scattering and transport measurements on semiconducting
RbFeS, a compound isostructural and isoelectronic to the
well-studied FeSe K, Rb, Cs, Tl/K) superconducting
systems. Both resistivity and DC susceptibility measurements reveal a magnetic
phase transition at K. Neutron diffraction studies show that the 275 K
transition originates from a phase with rhombic iron vacancy order which
exhibits an in-plane stripe antiferromagnetic ordering below 275 K. In
addition, interdigitated mesoscopically with the rhombic phase is an ubiquitous
phase with iron vacancy order. This phase has a
magnetic transition at K and an iron vacancy order-disorder
transition at K. These two different structural phases are closely
similar to those observed in the isomorphous Se materials. Based on the close
similarities of the in-plane antiferromagnetic structures, moments sizes, and
ordering temperatures in semiconducting RbFeS and
KFeSe, we argue that the in-plane antiferromagnetic order
arises from strong coupling between local moments. Superconductivity,
previously observed in the FeSeS system, is absent
in RbFeS, which has a semiconducting ground state. The
implied relationship between stripe/block antiferromagnetism and
superconductivity in these materials as well as a strategy for further
investigation is discussed in this paper.Comment: 7 pages, 5 figure
STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection.
UnlabelledSTING (stimulator of interferon [IFN] genes) initiates type I IFN responses in mammalian cells through the detection of microbial nucleic acids. The membrane-bound obligate intracellular bacterium Chlamydia trachomatis induces a STING-dependent type I IFN response in infected cells, yet the IFN-inducing ligand remains unknown. In this report, we provide evidence that Chlamydia synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite not previously identified in Gram-negative bacteria, and that this metabolite is a prominent ligand for STING-mediated activation of IFN responses during infection. We used primary mouse lung fibroblasts and HEK293T cells to compare IFN-β responses to Chlamydia infection, c-di-AMP, and other type I IFN-inducing stimuli. Chlamydia infection and c-di-AMP treatment induced type I IFN responses in cells expressing STING but not in cells expressing STING variants that cannot sense cyclic dinucleotides but still respond to cytoplasmic DNA. The failure to induce a type I IFN response to Chlamydia and c-di-AMP correlated with the inability of STING to relocalize from the endoplasmic reticulum to cytoplasmic punctate signaling complexes required for IFN activation. We conclude that Chlamydia induces STING-mediated IFN responses through the detection of c-di-AMP in the host cell cytosol and propose that c-di-AMP is the ligand predominantly responsible for inducing such a response in Chlamydia-infected cells.ImportanceThis study shows that the Gram-negative obligate pathogen Chlamydia trachomatis, a major cause of pelvic inflammatory disease and infertility, synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite that thus far has been described only in Gram-positive bacteria. We further provide evidence that the host cell employs an endoplasmic reticulum (ER)-localized cytoplasmic sensor, STING (stimulator of interferon [IFN] genes), to detect c-di-AMP synthesized by Chlamydia and induce a protective IFN response. This detection occurs even though Chlamydia is confined to a membrane-bound vacuole. This raises the possibility that the ER, an organelle that innervates the entire cytoplasm, is equipped with pattern recognition receptors that can directly survey membrane-bound pathogen-containing vacuoles for leaking microbe-specific metabolites to mount type I IFN responses required to control microbial infections
Universal magnetic and structural behaviors in the iron arsenides
Commonalities among the order parameters of the ubiquitous antiferromagnetism
present in the parent compounds of the iron arsenide high temperature
superconductors are explored. Additionally, comparison is made between the well
established two-dimensional Heisenberg-Ising magnet, KNiF and iron
arsenide systems residing at a critical point whose structural and magnetic
phase transitions coincide. In particular, analysis is presented regarding two
distinct classes of phase transition behavior reflected in the development of
antiferromagnetic and structural order in the three main classes of iron
arsenide superconductors. Two distinct universality classes are mirrored in
their magnetic phase transitions which empirically are determined by the
proximity of the coupled structural and magnetic phase transitions in these
materials.Comment: 6 pages, 4 figure
- …
