43 research outputs found

    Urinary Excretion of Ecdysterone and Its Metabolites Following Spinach Consumption

    Get PDF
    Scope The phytosteroid ecdysterone is present in spinach. In this study, the urinary elimination of ecdysterone and its metabolites in humans is investigated following spinach consumption of two different culinary preparations. Methods and results Eight participants (four males, four females) ingested 950 (27.1) g sautĂ©ed spinach (average [±standard deviation (SD)]) and 912 (70.6) g spinach smoothie as second intervention after washout. Post-administration urines are analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). After intake of both preparations, ecdysterone and two metabolites, 14-deoxy-ecdysterone, and 14-deoxy-poststerone, are excreted in urine. The maximum concentration of ecdysterone is ranging from 0.09 to 0.41 ”g mL−1 after sautĂ©ed spinach and 0.08–0.74 ”g mL−1 after smoothie ingestion. The total excreted amount (mean% [±SD]) in the urine as a parent drug plus the metabolites is only 1.4 (1.0) for both sautĂ©ed spinach and smoothie. The apparent sex related differences in 14-deoxy-poststerone excretion will need further investigations. Conclusion Only a small proportion of ecdysterone from spinach is excreted into urine. No significant differences are found in concentration and recovered amount (%) of ecdysterone, 14-deoxy-ecdysterone, and 14-deoxy-poststerone in urine between sautĂ©ed spinach and smoothie ingestion. A discrimination between ecdysterone from food or preparations will be challenging based on urinary concentrations only, at least for later post-administration samples

    Exercise for the Diabetic Gut—Potential Health Effects and Underlying Mechanisms

    No full text
    It can be assumed that changes in the gut microbiota play a crucial role in the development of type 2 diabetes mellitus (T2DM). It is generally accepted that regular physical activity is beneficial for the prevention and therapy of T2DM. Therefore, this review analyzes the effects of exercise training on the gut microbiota composition and the intestinal barrier function in T2DM. The current literature shows that regular exercise can influence the gut microbiota composition and the intestinal barrier function with ameliorative effects on T2DM. In particular, increases in the number of short-chain fatty acid (SCFA)-producing bacteria and improvements in the gut barrier integrity with reduced endotoxemia seem to be key points for positive interactions between gut health and T2DM, resulting in improvements in low-grade systemic inflammation status and glycemic control. However, not all aspects are known in detail and further studies are needed to further examine the efficacy of different training programs, the role of myokines, SCFA-producing bacteria, and SCFAs in the relevant metabolic pathways. As microbial signatures differ in individuals who respond differently to exercise training programs, one scientific focus could be the development of computer-based methods for the personalized analysis of the gut microbiota in the context of a microbiota/microbiome-based training program

    Sugar-sweetened beverage but not diluted cloudy apple juice consumption induces post-prandial endotoxemia in healthy adults

    No full text
    Abstract Sugar beverages are discussed as critical in the development of metabolic endotoxemia. Here, employing a cross-over design study we assessed the effect of diluted cloudy apple juice (AJ), an iso-caloric and -sweetened placebo (P), or water (W) on post-prandial endotoxemia in healthy, normal weight adults. After obtaining fasting blood, 19 healthy men and women consumed 500 mL AJ, P, or W in a randomized order and blood was taken 120 and 180 min later. Caco-2 cells were incubated with the beverages. Markers of intestinal barrier function were assessed. The intake of P but not of AJ or W was associated with a significant increase in TLR2 ligands and bacterial endotoxin in serum after 120 min and 180 min, respectively. P but not AJ significantly increased bacterial toxin permeation in Caco-2 cells. Our results suggest that the effects of sugar-sweetened beverages on markers of intestinal barrier function markedly differ from those of fruit juices

    The Influence of a Polyphenol-Rich Red Berry Fruit Juice on Recovery Process and Leg Strength Capacity after Six Days of Intensive Endurance Exercise in Recreational Endurance Athletes

    No full text
    Background: Various nutritional strategies are increasingly used in sports to reduce oxidative stress and promote recovery. Chokeberry is rich in polyphenols and can reduce oxidative stress. Consequently, chokeberry juices and mixed juices with chokeberry content are increasingly used in sports. However, the data are very limited. Therefore, this study investigates the effects of the short-term supplementation of a red fruit juice drink with chokeberry content or a placebo on muscle damage, oxidative status, and leg strength during a six-day intense endurance protocol. Methods: Eighteen recreational endurance athletes participated in a cross-over high intensity interval training (HIIT) design, receiving either juice or a placebo. Baseline and post-exercise assessments included blood samples, anthropometric data, and leg strength measurements. Results: A significant increase was measured in muscle damage following the endurance protocol in all participants (∆ CK juice: 117.12 ± 191.75 U/L, ∆ CK placebo: 164.35 ± 267.00 U/L; p = 0.001, η2 = 0.17). No group effects were detected in exercise-induced muscle damage (p = 0.371, η2 = 0.010) and oxidative status (p = 0.632, η2 = 0.000). The reduction in strength was stronger in the placebo group, but group effects are missing statistical significance (∆ e1RM juice: 1.34 ± 9.26 kg, ∆ e1RM placebo: −3.33 ± 11.49 kg; p = 0.988, η2 = 0.000). Conclusion: Although a reduction in strength can be interpreted for the placebo treatment, no statistically significant influence of chokeberry could be determined. It appears that potential effects may only occur with prolonged application and a higher content of polyphenols, but further research is needed to confirm this

    Running for Your Life: Metabolic Effects of a 160.9/230 km Non-Stop Ultramarathon Race on Body Composition, Inflammation, Heart Function, and Nutritional Parameters

    No full text
    Moderate endurance exercise leads to an improvement in cardiovascular performance, stress resilience, and blood function. However, the influence of chronic endurance exercise over several hours or days is still largely unclear. We examined the influence of a non-stop 160.9/230 km ultramarathon on body composition, stress/cardiac response, and nutrition parameters. Blood samples were drawn before (pre) and after the race (post) and analyzed for ghrelin, insulin, irisin, glucagon, cortisol, kynurenine, neopterin, and total antioxidant capacity. Additional measurements included heart function by echocardiography, nutrition questionnaires, and body impedance analyses. Of the 28 included ultra-runners (7f/21m), 16 participants dropped out during the race. The remaining 12 finishers (2f/10m) showed depletion of antioxidative capacities and increased inflammation/stress (neopterin/cortisol), while energy metabolism (insulin/glucagon/ghrelin) remained unchanged despite a high negative energy balance. Free fat mass, protein, and mineral content decreased and echocardiography revealed a lower stroke volume, left end diastolic volume, and ejection fraction post race. Optimizing nutrition (high-density protein-rich diet) during the race may attenuate the observed catabolic and inflammatory effects induced by ultramarathon running. As a rapidly growing discipline, new strategies for health prevention and extensive monitoring are needed to optimize the athletes’ performance

    Outcomes of patients with systemic sclerosis treated with rituximab in contemporary practice: a prospective cohort study.

    No full text
    Objective To assess the safety and efficacy of rituximab in systemic sclerosis (SSc) in clinical practice. Methods We performed a prospective study including patients with SSc from the European Scleroderma Trials and Research (EUSTAR) network treated with rituximab and matched with untreated patients with SSc. The main outcomes measures were adverse events, skin fibrosis improvement, lung fibrosis worsening and steroids use among propensity score-matched patients treated or not with rituximab. Results 254 patients were treated with rituximab, in 58% for lung and in 32% for skin involvement. After a median follow-up of 2 years, about 70% of the patients had no side effect. Comparison of treated patients with 9575 propensity-score matched patients showed that patients treated with rituximab were more likely to have skin fibrosis improvement (22.7 vs 14.03 events per 100 person-years; OR: 2.79 [1.47-5.32]; p=0.002). Treated patients did not have significantly different rates of decrease in forced vital capacity (FVC)>10% (OR: 1.03 [0.55-1.94]; p=0.93) nor in carbon monoxide diffusing capacity (DLCO) decrease. Patients having received rituximab were more prone to stop or decrease steroids (OR: 2.34 [1.56-3.53], p<0.0001). Patients treated concomitantly with mycophenolate mofetil had a trend for better outcomes as compared with patients receiving rituximab alone (delta FVC: 5.22 [0.83-9.62]; p=0.019 as compared with controls vs 3 [0.66-5.35]; p=0.012). Conclusion Rituximab use was associated with a good safety profile in this large SSc-cohort. Significant change was observed on skin fibrosis, but not on lung. However, the limitation is the observational design. The potential stabilisation of lung fibrosis by rituximab has to be addressed by a randomised trial

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    No full text
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10310^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    No full text
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10310^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
    corecore