201 research outputs found
Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter
An in-situ calibration of a logarithmic periodic dipole antenna with a
frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of
a radio station system used for detection of cosmic ray induced air showers at
the Engineering Radio Array of the Pierre Auger Observatory, the so-called
Auger Engineering Radio Array (AERA). The directional and frequency
characteristics of the broadband antenna are investigated using a remotely
piloted aircraft (RPA) carrying a small transmitting antenna. The antenna
sensitivity is described by the vector effective length relating the measured
voltage with the electric-field components perpendicular to the incoming signal
direction. The horizontal and meridional components are determined with an
overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} %
respectively. The measurement is used to correct a simulated response of the
frequency and directional response of the antenna. In addition, the influence
of the ground conductivity and permittivity on the antenna response is
simulated. Both have a negligible influence given the ground conditions
measured at the detector site. The overall uncertainties of the vector
effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in
the square root of the energy fluence for incoming signal directions with
zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is
unchanged with respect to v2. 39 pages, 15 figures, 2 table
The observation of lightning-related events with the Surface Detector of the Pierre Auger Observatory
The Pierre Auger Observatory, designed to detect ultra-high energy cosmic rays, can be a valid instrument at the ground to study phenomena related to the atmospheric electricity. The fluorescence detector is a powerful instrument to observe ELVES thanks to its excellent time resolution, while peculiar events with a large number of triggered stations have been recorded by the surface detector. The characteristic signal of these events lasts more than 10 mu s, about two orders of magnitude more than the duration of a signal produced by a cosmic muon. Moreover, each of these events has at least one station with a signal dominated by a high-frequency noise that could be related with a lightning-induced signal. Stations with a long-lasting signal are arranged in a disk shape. There are "big" events characterized by a radius of about 6 km and few "small" events with a radius of about 2-3 km. The signal, generated by a source very close to the ground, first reaches the innermost stations and then spreads outwards. In the "big" events, a lack of signal in some of the central stations was observed. Further studies and checks are in progress to understand the origin of the lack of signal and what mechanisms occurring during the lightning evolution may provide for electric fields capable of generating and accelerating particles that can produce Cherenkov light in the stations of the surface detector
Aerosol Optical Depth from MODIS satellite data above the Pierre Auger Observatory
Aerosol optical depth can be retrieved from measurements performed by Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument. The MODIS satellite system includes two polar satellites, Terra and Aqua. Each of them flies over the Pierre Auger Observatory once a day, providing two measurements of aerosols per day and covering the whole area of the Observatory. MODIS aerosol data products have been generated by three dedicated algorithms over bright and dark land and over ocean surface. We choose the Deep Blue algorithm data to investigate the distribution of aerosols over the Observatory, as this algorithm is the most appropriate one for semi-arid land of the Pierre Auger Observatory. This data algorithm allows us to obtain aerosol optical depth values for the investigated region, and to build cloud-free aerosol maps with a horizontal resolution 0.1 degrees x0.1 degrees. Since a sufficient number of measurements was obtained only for Loma Amarilla and Coihueco fluorescence detector (FD) sites of the Pierre Auger Observatory, a more detailed analysis of aerosol distributions is provided for these sites. Aerosols over these FD sites are generally distributed in a similar way each year, but some anomalies are also observed. These anomalies in aerosol distributions appear mainly due to some transient events, such as volcanic ash clouds, fires etc. We conclude that the Deep Blue MODIS algorithm provides more realistic aerosol optical depth values than other available algorithms
Direct measurement of the muonic content of extensive air showers between and eV at the Pierre Auger Observatory
The hybrid design of the Pierre Auger Observatory allows for the measurement of the properties of extensive air showers initiated by ultra-high energy cosmic rays with unprecedented precision. By using an array of prototype underground muon detectors, we have performed the first direct measurement, by the Auger Collaboration, of the muon content of air showers between 2×10 and 2×10 eV. We have studied the energy evolution of the attenuation-corrected muon density, and compared it to predictions from air shower simulations. The observed densities are found to be larger than those predicted by models. We quantify this discrepancy by combining the measurements from the muon detector with those from the Auger fluorescence detector at 10eV and 10eV. We find that, for the models to explain the data, an increase in the muon density of 38% ±4%(12%) ± (21%)¦(18%) for EPOS-LHC, and of 50%(53%) ±4%(13%) ± (23%)¦(20%) for QGSJetII-04, is respectively needed
Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory
AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the
Pierre Auger Observatory to complement the study of ultra-high-energy cosmic
rays (UHECR) by measuring the muon content of extensive air showers (EAS). It
consists of an array of 61 water Cherenkov detectors on a denser spacing in
combination with underground scintillation detectors used for muon density
measurement. Each detector is composed of three scintillation modules, with 10
m detection area per module, buried at 2.3 m depth, resulting in a total
detection area of 30 m. Silicon photomultiplier sensors (SiPM) measure the
amount of scintillation light generated by charged particles traversing the
modules. In this paper, the design of the front-end electronics to process the
signals of those SiPMs and test results from the laboratory and from the Pierre
Auger Observatory are described. Compared to our previous prototype, the new
electronics shows a higher performance, higher efficiency and lower power
consumption, and it has a new acquisition system with increased dynamic range
that allows measurements closer to the shower core. The new acquisition system
is based on the measurement of the total charge signal that the muonic
component of the cosmic ray shower generates in the detector.Comment: 40 pages, 33 figure
Analysis of ELVES at the Pierre Auger Observatory
In the last six years, the Fluorescence Detector (FD) of the Auger Observatory has been exploited for the study of transient luminous events occuring high above thunderstorms at large distances (250 to more than 1000 km) from the Observatory. The first ELVES candidate was discovered during a night shift in 2005, and further studies based on auxiliary subtriggers allowed to modify the third level trigger of the observatory in order to acquire them with reasonable efficiency. This report aims to briefly review the studies underway on the >4000 ELVES triggers harvested in the years 2013-18 by the Observatory
Measurement of the cosmic-ray energy spectrum above 2.5 x 10(18) eV using the Pierre Auger Observatory
We report a measurement of the energy spectrum of cosmic rays for energies above 2.5×10 eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5×10 eV. The principal conclusions are
(1) The flattening of the spectrum near 5×10 eV, the so-called “ankle,” is confirmed.
(2) The steepening of the spectrum at around 5×10 eV is confirmed.
(3) A new feature has been identified in the spectrum: in the region above the ankle the spectral index γ of the particle flux (∝E) changes from 2.51±0.03 (stat)±0.05 (syst) to 3.05±0.05 (stat)±0.10 (syst) before changing sharply to 5.1±0.3 (stat)±0.1 (syst) above 5×10 eV.
(4) No evidence for any dependence of the spectrum on declination has been found other than a mild excess from the Southern Hemisphere that is consistent with the anisotropy observed above 8×10 eV
Searches for Ultra-High-Energy Photons at the Pierre Auger Observatory
The Pierre Auger Observatory, being the largest air-shower experiment in the
world, offers an unprecedented exposure to neutral particles at the highest
energies. Since the start of data taking more than 18 years ago, various
searches for ultra-high-energy (UHE, ) photons have
been performed: either for a diffuse flux of UHE photons, for point sources of
UHE photons or for UHE photons associated with transient events like
gravitational wave events. In the present paper, we summarize these searches
and review the current results obtained using the wealth of data collected by
the Pierre Auger Observatory.Comment: Review article accepted for publication in Universe (special issue on
ultra-high energy photons
- …