3 research outputs found
Novedoso desarrollo biotecnolĂłgico : alimentos con menos colesterol
Fil: Nudel, Clara. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Catedra de MicrobiologĂa Industrial y BiotecnologĂa; Argentina.Fil: Nusblat, Alejandro. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. CĂĄtedra de MicrobiologĂa Industrial y BiotecnologĂa; Argentina.Fil: Valcarce, German. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂmicas; Argentina.Fil: Florin- Christensen, Jorge. Universidad de Buenos Aires. Facultad de Medicina; Argentina.Investigadores del Conicet y de la Facultad de Farmacia y BioquĂmica de la UBA desarrollaron un\nmicroorganismo unicelular (Tetrahymena) que al ser incorporado a alimentos como la leche y el huevo\nles reduce el colesterol en un 90% transformĂĄndolo en provitamina D
Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophila
Live Tetrahymena thermophila transforms exogenous cholesterol into 7,22-bis, dehydrocholesterol (DHC) by desaturation at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of Tetrahymena thermophila transforms exogenous cholesterol into 7,22-bis, dehydrocholesterol (DHC) by desaturation at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of Tetrahymenaâs cholesterol desaturases in cell-free extracts, we describe conditions for increasing the expression of both desaturases based on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. s cholesterol desaturases in cell-free extracts, we describe conditions for increasing the expression of both desaturases based on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions.b5 in these reactions.Fil: Nusblat, Alejandro David. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Departamento de MicrobiologĂa, InmunologĂa y BiotecnologĂa. CĂĄtedra de MicrobiologĂa Industrial y BiotecnologĂa; ArgentinaFil: Muñoz, Luciana. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Departamento de MicrobiologĂa, InmunologĂa y BiotecnologĂa. CĂĄtedra de MicrobiologĂa Industrial y BiotecnologĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Valcarce, German A.. No especifĂca;Fil: Nudel, Berta Clara. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Departamento de MicrobiologĂa, InmunologĂa y BiotecnologĂa. CĂĄtedra de MicrobiologĂa Industrial y BiotecnologĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentin
Structure and development of the Andean system between 36⊠and 39âŠS
One of the main morphological changes along the Southern Central Andes occurs from 36° to 39°S. The northern portion is characterized by prominent basement structures and a thick-skinned orogenic front with relief of over 2000 m with a deep level of exhumation where more than 4 km of section has been eroded. Contrastingly, the southern part is formed by mildly inverted basement structures restricted mainly to the hinterland zone, which reaches only 1500â1700 m relief. We quantify the variable contributions of two main contractional stages through the construction of three regionally balanced sections across the Andes, constrained by field and geophysical data. Extensional re-activation described for this segment in late Oligocene-early Miocene and Pliocene to Quaternary times, after the two main contractional episodes, suggests only 3 km of stretching that represents 30â10% of the original longitude. We, therefore, conclude that while initial Late Cretaceous to Eocene compression was similar along strike (âŒ10â7 km), it is the contrasting degrees of Neogene shortening (âŒ16â6 km) that have played the largest role in the along strike differences in structure and morphology along this portion of the southern Andes. Variable Neogene arc expansion could be responsible for the contrasting contractional deformation: In the north, late Miocene arc-related rocks cover most of the retroarc zone (>200 km with respect to the late Miocene arc front in the south), presumably driven by a shallow subduction episode in the area, whereas to the south they remain restricted to the continental drainage divide. Other factors involving architecture of previous rift structures, are proposed as additional mechanisms that accommodated variable shortening magnitudes through inversion.Fil: Rojas Vera, Emilio Agustin. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos ; ArgentinaFil: Folguera Telichevsky, Andres. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos ; ArgentinaFil: Zamora Valcarce, G. Repsol - ExploraciĂłn; PerĂșFil: Bottesi, German. YPF - TecnologĂa; ArgentinaFil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos ; Argentin