12 research outputs found

    Eukaryotic Translation Initiation Factor 5B Activity Regulates Larval Growth Rate and Germline Development in Caenorhabditis elegans

    Get PDF
    In C. elegans, a population of proliferating germ cells is maintained via GLP-1/Notch signaling; in the absence of GLP-1 signaling, germ cells prematurely enter meiosis and differentiate. We previously identified ego (enhancer of glp-1) genes that promote germline proliferation and interact genetically with the GLP-1 signaling pathway. Here, we report that iffb-1 (initiation factor five B) is an ego gene. iffb-1 encodes the sole C. elegans isoform of eukaryotic translation initiation factor 5B, a protein essential for translation. We have used RNA interference and a deletion mutation to determine the developmental consequences of reduced iffb-1 activity. Our data indicate that maternal iffb-1 gene expression is sufficient for embryogenesis, and zygotic iffb-1 expression is required for development beyond late L1/ early L2 stage. Partial reduction in iffb-1 expression delays larval development and can severely disrupt proliferation and differentiation of germ cells. We hypothesize that germline development is particularly sensitive to iffb-1 expression level

    EGO-1, a Putative RNA-Directed RNA Polymerase, Promotes Germline Proliferation in Parallel With GLP-1/Notch Signaling and Regulates the Spatial Organization of Nuclear Pore Complexes and Germline P Granules in Caenorhabditis elegans

    Get PDF
    Caenorhabditis elegans EGO-1, a putative cellular RNA-directed RNA polymerase, promotes several aspects of germline development, including proliferation, meiosis, and gametogenesis, and ensures a robust response to RNA interference. In C. elegans, GLP-1/Notch signaling from the somatic gonad maintains a population of proliferating germ cells, while entry of germ cells into meiosis is triggered by the GLD-1 and GLD-2 pathways. GLP-1 signaling prevents germ cells from entering meiosis by inhibiting GLD-1 and GLD-2 activity. We originally identified the ego-1 gene on the basis of a genetic interaction with glp-1. Here, we investigate the role of ego-1 in germline proliferation. Our data indicate that EGO-1 does not positively regulate GLP-1 protein levels or GLP-1 signaling activity. Moreover, GLP-1 signaling does not positively regulate EGO-1 activity. EGO-1 does not inhibit expression of GLD-1 protein in the distal germline. Instead, EGO-1 acts in parallel with GLP-1 signaling to influence the proliferation vs. meiosis fate choice. Moreover, EGO-1 and GLD-1 act in parallel to ensure germline health. Finally, the size and distribution of nuclear pore complexes and perinuclear P granules are altered in the absence of EGO-1, effects that disrupt germ cell biology per se and probably limit germline growt

    EGO-1, a Putative RNA-Dependent RNA Polymerase, Is Required for Heterochromatin Assembly on Unpaired DNA during C. elegans Meiosis

    Get PDF
    During meiosis in C. elegans, unpaired chromosomes and chromosomal regions accumulate high levels of histone H3 lysine 9 dimethylation (H3K9me2), a modification associated with facultative heterochromatin assembly and the resulting transcriptional silencing [1, 2]. Meiotic silencing of unpaired DNA may be a widely conserved genome defense mechanism [3–5]. The mechanisms of meiotic silencing remain unclear, although both transcriptional and posttranscriptional processes are implicated [3–5]. Cellular RNA-dependent RNA polymerases (RdRPs) function in development and RNA-mediated silencing in many species [3, 6, 7] and in heterochromatin assembly in S. pombe [3, 8]. There are four C. elegans RdRPs, including two with known germline functions. EGO-1 is required for fertility and robust germline RNAi [9–11]. RRF-3 acts genetically to repress RNAi and is required for normal meiosis and spermatogenesis at elevated temperatures [12] (S. L’Hernault, personal communication). Among C. elegans RdRPs, we find that only EGO-1 is required for H3K9me2 enrichment on unpaired chromosomal regions during meiosis. This H3K9me2 enrichment does not require Dicer or Drosha nuclease or any of several other proteins required for RNAi. ego-1 interacts genetically with him-17, another regulator of chromatin and meiosis [13], to promote germline development. We conclude that EGO-1 is an essential component of meiotic silencing in C. elegans

    Myosin5a tail associates directly with Rab3A-containing compartments in neurons

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of American Society for Biochemistry and Molecular Biology. The definitive version was published in Journal of Biological Chemistry, 286 (2011): 14352-14361, doi:10.1074/jbc.M110.187286.Myosin-Va (Myo5a) is a motor protein associated with synaptic vesicles (SVs) but the mechanism by which it interacts has not yet been identified. A potential class of binding partners are Rab GTPases and Rab3A is known to associate with SVs and is involved in SV trafficking. We performed experiments to determine whether Rab3A interacts with Myo5a and whether it is required for transport of neuronal vesicles. In vitro motility assays performed with axoplasm from the squid giant axon showed a requirement for a Rab GTPase in Myo5a-dependent vesicle transport. Furthermore, mouse recombinant Myo5a tail revealed that it associated with Rab3A in rat brain synaptosomal preparations in vitro and the association was confirmed by immunofluorescence imaging of primary neurons isolated from the frontal cortex of mouse brains. Synaptosomal Rab3A was retained on recombinant GST-tagged Myo5a tail affinity columns in a GTP-dependent manner. Finally, the direct interaction of Myo5a and Rab3A was determined by sedimentation v e l o c i t y analytical ultracentrifugation using recombinant mouse Myo5a tail and human Rab3A. When both proteins were incubated in the presence of 1 mM GTPγS, Myo5a tail and Rab3A formed a complex and a direct interaction was observed. Further analysis revealed that GTP-bound Rab3A interacts with both the monomeric and dimeric species of the Myo5a tail. However, the interaction between Myo5a tail and nucleotidefree Rab3A did not occur. Thus, our results show that Myo5a and Rab3A are direct binding partners and interact on SVs and that the Myo5a/Rab3A complex is involved in transport of neuronal vesicles

    Caenorhabditis elegans atx-2 Promotes Germline Proliferation and the Oocyte Fate

    Get PDF
    In the Caenorhabditis elegans germline, proliferation is induced by Notch-type signaling. Entry of germ cells into meiosis is triggered by activity of the GLD-1 and GLD-2 pathways, which function redundantly to promote meiosis and/or inhibit proliferation. Activation of the germline Notch-type receptor, GLP-1, ultimately inhibits the activities of the GLD-1 and GLD-2 pathways. We previously identified several ego (enhancer of glp-1) genes that promote germline proliferation and interact genetically with the GLP-1 signaling pathway. Here, we show that atx-2 is an ego gene. Our data suggest that ATX-2 is not a positive regulator of the GLP-1 signaling pathway and GLP-1 signaling is not the sole positive regulator of ATX-2 activity. Moreover, our data indicate that GLP-1 must have an additional function, which may be to repress activity of a third meiotic entry pathway that would work in parallel with the GLD-1 and GLD-2 pathways. In addition to its role in proliferation, ATX-2 acts downstream of FOG-2 to promote the female germline fate

    EGO-1, a Putative RNA-Directed RNA Polymerase, Promotes Germline Proliferation in Parallel With GLP-1/Notch Signaling and Regulates the Spatial Organization of Nuclear Pore Complexes and Germline P Granules in Caenorhabditis elegans

    No full text
    ABSTRACT Caenorhabditis elegans EGO-1, a putative cellular RNA-directed RNA polymerase, promotes several aspects of germline development, including proliferation, meiosis, and gametogenesis, and ensures a robust response to RNA interference. In C. elegans, GLP-1/Notch signaling from the somatic gonad maintains a population of proliferating germ cells, while entry of germ cells into meiosis is triggered by the GLD-1 and GLD-2 pathways. GLP-1 signaling prevents germ cells from entering meiosis by inhibiting GLD-1 and GLD-2 activity. We originally identified the ego-1 gene on the basis of a genetic interaction with glp-1. Here, we investigate the role of ego-1 in germline proliferation. Our data indicate that EGO-1 does not positively regulate GLP-1 protein levels or GLP-1 signaling activity. Moreover, GLP-1 signaling does not positively regulate EGO-1 activity. EGO-1 does not inhibit expression of GLD-1 protein in the distal germline. Instead, EGO-1 acts in parallel with GLP-1 signaling to influence the proliferation vs. meiosis fate choice. Moreover, EGO-1 and GLD-1 act in parallel to ensure germline health. Finally, the size and distribution of nuclear pore complexes and perinuclear P granules are altered in the absence of EGO-1, effects that disrupt germ cell biology per se and probably limit germline growth

    EGO-1, a Putative RNA-Directed RNA Polymerase, Promotes Germline Proliferation in Parallel With GLP-1/Notch Signaling and Regulates the Spatial Organization of Nuclear Pore Complexes and Germline P Granules in Caenorhabditis elegans

    Get PDF
    Caenorhabditis elegans EGO-1, a putative cellular RNA-directed RNA polymerase, promotes several aspects of germline development, including proliferation, meiosis, and gametogenesis, and ensures a robust response to RNA interference. In C. elegans, GLP-1/Notch signaling from the somatic gonad maintains a population of proliferating germ cells, while entry of germ cells into meiosis is triggered by the GLD-1 and GLD-2 pathways. GLP-1 signaling prevents germ cells from entering meiosis by inhibiting GLD-1 and GLD-2 activity. We originally identified the ego-1 gene on the basis of a genetic interaction with glp-1. Here, we investigate the role of ego-1 in germline proliferation. Our data indicate that EGO-1 does not positively regulate GLP-1 protein levels or GLP-1 signaling activity. Moreover, GLP-1 signaling does not positively regulate EGO-1 activity. EGO-1 does not inhibit expression of GLD-1 protein in the distal germline. Instead, EGO-1 acts in parallel with GLP-1 signaling to influence the proliferation vs. meiosis fate choice. Moreover, EGO-1 and GLD-1 act in parallel to ensure germline health. Finally, the size and distribution of nuclear pore complexes and perinuclear P granules are altered in the absence of EGO-1, effects that disrupt germ cell biology per se and probably limit germline growth
    corecore