273 research outputs found

    Natural antisense transcripts regulate the neuronal stress response and excitability

    Get PDF
    Neurons regulate ionic fluxes across their plasma membrane to maintain their excitable properties under varying environmental conditions. However, the mechanisms that regulate ion channels abundance remain poorly understood. Here we show that pickpocket 29 (ppk29), a gene that encodes a Drosophila degenerin/epithelial sodium channel (DEG/ENaC), regulates neuronal excitability via a protein-independent mechanism. We demonstrate that the mRNA 3′UTR of ppk29 affects neuronal firing rates and associated heat-induced seizures by acting as a natural antisense transcript (NAT) that regulates the neuronal mRNA levels of seizure (sei), the Drosophila homolog of the human Ether-à-go-go Related Gene (hERG) potassium channel. We find that the regulatory impact of ppk29 mRNA on sei is independent of the sodium channel it encodes. Thus, our studies reveal a novel mRNA dependent mechanism for the regulation of neuronal excitability that is independent of protein-coding capacity. DOI: http://dx.doi.org/10.7554/eLife.01849.00

    Loss of the spectraplakin short stop activates the DLK injury response pathway in drosophila

    Get PDF
    The MAPKKK dual leucine zipper-containing kinase (DLK, Wallenda in Drosophila) is an evolutionarily conserved component of the axonal injury response pathway. After nerve injury, DLK promotes degeneration of distal axons and regeneration of proximal axons. This dual role in coordinating degeneration and regeneration suggests that DLK may be a sensor of axon injury, and so understanding how DLK is activated is important. Two mechanisms are known to activate DLK. First, increasing the levels of DLK via overexpression or loss of the PHR ubiquitin ligases that target DLK activate DLK signaling. Second, in Caenorhabditis elegans, a calcium-dependent mechanism, can activate DLK. Here we describe a new mechanism that activates DLK in Drosophila: loss of the spectraplakin short stop (shot). In a genetic screen for mutants with defective neuromuscular junction development, we identify a hypomorphic allele of shot that displays synaptic terminal overgrowth and a precocious regenerative response to nerve injury. We demonstrate that both phenotypes are the result of overactivation of the DLK signaling pathway. We further show that, unlike mutations in the PHR ligase Highwire, loss of function of shot activates DLK without a concomitant increase in the levels of DLK. As a spectraplakin, Shot binds to both actin and microtubules and promotes cytoskeletal stability. The DLK pathway is also activated by downregulation of the TCP1 chaperonin complex, whose normal function is to promote cytoskeletal stability. These findings support the model that DLK is activated by cytoskeletal instability, which is a shared feature of both spectraplakin mutants and injured axons

    SkpA restrains synaptic terminal growth during development and promotes axonal degeneration following injury

    Get PDF
    The Wallenda (Wnd)/dual leucine zipper kinase (DLK)-Jnk pathway is an evolutionarily conserved MAPK signaling pathway that functions during neuronal development and following axonal injury. Improper pathway activation causes defects in axonal guidance and synaptic growth, whereas loss-of-function mutations in pathway components impairs axonal regeneration and degeneration after injury. Regulation of this pathway is in part through the E3 ubiquitin ligase Highwire (Hiw), which targets Wnd/DLK for degradation to limit MAPK signaling. To explore mechanisms controlling Wnd/DLK signaling, we performed a large-scale genetic screen in Drosophila to identify negative regulators of the pathway. Here we describe the identification and characterization of SkpA, a core component of SCF E3 ubiquitin ligases. Mutants in SkpA display synaptic overgrowth and an increase in Jnk signaling, similar to hiw mutants. The combination of hypomorphic alleles of SkpA and hiw leads to enhanced synaptic growth. Mutants in the Wnd-Jnk pathway suppress the overgrowth of SkpA mutants demonstrating that the synaptic overgrowth is due to increased Jnk signaling. These findings support the model that SkpA and the E3 ligase Hiw function as part of an SCF-like complex that attenuates Wnd/DLK signaling. In addition, SkpA, like Hiw, is required for synaptic and axonal responses to injury. Synapses in SkpA mutants are more stable following genetic or traumatic axonal injury, and axon loss is delayed in SkpA mutants after nerve crush. As in highwire mutants, this axonal protection requires Nmnat. Hence, SkpA is a novel negative regulator of the Wnd-Jnk pathway that functions with Hiw to regulate both synaptic development and axonal maintenance

    Ferromagnetism in Co-doped ZnO films grown by molecular beam epitaxy: magnetic, electrical and microstructural studies

    Get PDF
    We studied structural, optical and magnetic properties of high-quality 5 and 15% Co-doped ZnO films grown by plasma-assisted molecular beam epitaxy (MBE) on (0001)-sapphire substrates. Magnetic force microscopy (MFM) and magnetic measurements with SQUID magnetometer show clear ferromagnetic behavior of the films up to room temperature whereas they are antiferromagnetic below 200 K approximately. Temperature dependence of the carrier mobility was determined using Raman line shape analysis of the longitudinal-optical-phonon-plasmon coupled modes. It shows that the microscopic mechanism for ferromagnetic ordering is coupling mediated by free electrons between spins of Co atoms. These results bring insight into a subtle interplay between charge carriers and magnetism in MBE-grown Zn(1-x)CoxO films.Comment: 10 pages, 9 figures, 2 table

    Multimodal size distribution of Si nanoclusters in SiO₂ as manifestation of interaction in the space of sizes

    No full text
    This paper summarizes the results of experimental studies revealing a multimodal character of the function of size distribution of Si nanoclusters in light-emitting SiO₂:Si structures. To explain the nature of this multimodality, a “liquid” approach to the description of the coalescence stage based on taking into account the correlation effects caused by particle-particle interactions in the space of sizes is proposed. This approach is justified by a high concentration of solutions where the nuclei of the new phase are described by a multimodal function of size distribution.Узагальнені результати експериментальних досліджень, які засвідчують полімодальність функції розмірного розподілу кремнієвих наночасток в матриці SiO₂ в випадку сильного перенасичення розчину SiO2:Si кремнійовою компонентою. Для пояснення природи полімодальності запропоновано «рідинний» підхід в описі стадії коалесценції, який оснований на врахуванні процесів міжчастинкової взаємодії в просторі розмірів. Запропонований підхід може виявитись перспективним для розвитку фізичних основ керування спектральним складом і інтенсивністю випромінювання кремнійових випромінювачів світла.Обобщены результаты экспериментальных исследований, свидетельствующие о полимодальности функции размерного распределения кремниевых наночастиц в матрице SiO₂ в случае сильного пересыщения раствора SiO2:Si кремниевой составляющей. Для объяснения природы полимодальности предложен «жидкостный» подход в описании стадии коалесценции, основанный на учете процессов межчастичного взаимодействия в пространстве размеров. Предложенный подход перспективен для развития физических принципов управления спектральным составом и интенсивностью излучения кремниевых излучателей света

    Drift correction of the analyzed area during the study of the lateral elemental composition distribution in single semiconductor nanostructures by scanning Auger microscopy

    No full text
    The main difficulty in obtaining the lateral elemental composition distribution maps of the semiconductor nanostructures by Scanning Auger Microscopy is the thermal drift of the analyzed area, arising from its local heating with the electron probe and subsequent shift. Therefore, the main goal of the study was the development of the effective thermal drift correction procedure. The measurements were carried out on GeSi/Si nanoislands obtained with molecular beam epitaxy by means of Ge deposition on Si(100) substrate. Use of the thermal drift correction procedure made it possible to get the lateral elemental composition distribution maps of Si and Ge for various types of GeSi/Si nanoislands. The presence of the germanium core and silicon shell in both the dome GeSi/Si nanoislands and pyramid ones was established. In the authors’ opinion, this type of elemental distribution is a result of the completeness of the interdiffusion processes course in the island/wetting layer/substrate system, which play the key role in the nucleation, evolution and growth of GeSi/Si nanoislands. The proposed procedure of the thermal drift correction of the analyzed area allows direct determination of the lateral composition distribution of the GeSi/Si nanoislands with the size of the structural elements down to 10 nm

    Biomorphous SiC ceramics prepared from cork oak as precursor

    Get PDF
    Porous ceramic materials of SiC were synthesized from carbon matrices obtained via pyrolysis of natural cork as precursor. We propose a method for the fabrication of complex-shaped porous ceramic hardware consisting of separate parts prepared from natural cork. It is demonstrated that the thickness of the carbon-matrix walls can be increased through their impregnation with Bakelite phenolic glue solution followed by pyrolysis. This decreases the material's porosity and can be used as a way to modify its mechanical and thermal characteristics. Both the carbon matrices (resulted from the pyrolysis step) and the resultant SiC ceramics are shown to be pseudomorphous to the structure of initial cork. Depending on the synthesis temperature, 3C-SiC, 6H-SiC, or a mixture of these polytypes, could be obtained. By varying the mass ratio of initial carbon and silicon components, stoichiometric SiC or SiC:C:Si, SiC:C, and SiC:Si ceramics could be produced. The structure, as well as chemical and phase composition of the prepared materials were studied by means of Raman spectroscopy and scanning electron microscopy

    RIM promotes calcium channel accumulation at active zones of the Drosophila neuromuscular junction

    Get PDF
    Synaptic communication requires the controlled release of synaptic vesicles from presynaptic axon terminals. Release efficacy is regulated by the many proteins that comprise the presynaptic release apparatus, including Ca(2+) channels and proteins that influence Ca(2+) channel accumulation at release sites. Here we identify Drosophila RIM and demonstrate that it localizes to active zones at the larval neuromuscular junction. In Drosophila RIM mutants, there is a large decrease in evoked synaptic transmission, due to a significant reduction in both the clustering of Ca(2+) channels and the size of the readily releasable pool of synaptic vesicles at active zones. Hence, RIM plays an evolutionarily conserved role in regulating synaptic calcium channel localization and readily releasable pool size. Since RIM has traditionally been studied as an effector of Rab3 function, we investigate whether RIM is involved in the newly identified function of Rab3 in the distribution of presynaptic release machinery components across release sites. Bruchpilot (Brp), an essential component of the active zone cytomatrix T bar, is unaffected by RIM disruption, indicating that Brp localization and distribution across active zones does not require wild type RIM. In addition, larvae containing mutations in both RIM and rab3 have reduced Ca(2+) channel levels and a Brp distribution that is very similar to that of the rab3 single mutant, indicating that RIM functions to regulate Ca(2+) channel accumulation but is not a Rab3 effector for release machinery distribution across release sites

    Investigation of structural perfection of SiC ingots grown by a sublimation method

    No full text
    Monocrystalline SiC ingots were grown by a modified Lely method using 6H-SiC seed crystals with (0001) base plane. The crystal growth was carried out in the temperature range 2200-2500 ⁰C at Ar pressure from 2 to 40 mbar. The rate of growth varied between 0.3 and 1.5 mm/hour in the C-axis direction. At growth time of about 15 hours we obtained the ingots with 35 mm useful diameter. To determine the polytype composition of SiC ingots the Raman scattering technique was used. The structural defects were investigated by means of reflection and transmission light microscopy and by selective etching. In the best ingots the dislocation density did not exceed 102 cm⁻², the micropipe density - 10-20 cm⁻², and blocks were absent
    corecore