26 research outputs found

    Reprogramming of the non-coding transcriptome during brain development

    Get PDF
    A recent global analysis of gene expression during the differentiation of neuronal stem cells to neurons and oligodendrocytes indicates a complex pattern of changes in the expression of both protein-coding transcripts and long non-protein-coding RNAs

    A snRNP's ordered path to maturity

    No full text
    The U5 snRNP (small ribonucleoprotein) contains several functionally crucial splicing factors that form an extensive interaction network both in the snRNP and within the spliceosome. In this issue of Genes & Development, Weber and colleagues (pp. 1601–1612) shed light on the dynamic assembly of this critical spliceosomal component and elucidate the molecular interactions underlying the ordered addition of Brr2, a pivotal spliceosomal helicase, to the U5 snRNP

    Regulation of the Interferon Response by lncRNAs in HCV Infection

    No full text
    The interferon (IFN) response is a critical component of the innate immunity antiviral pathways in mammalians. IFN signaling results in increased expression of cellular factors that block key steps in the viral replication cycle. Many IFN-induced antiviral factors act through decreasing viral entry, replication, transcription, translation, packaging and release. However, these effects are also deleterious for the viability of the cell, which necessitates a tight control over the magnitude and duration of the IFN response. This is partially achieved through the IFN-mediated activation of negative regulatory factors that help in termination of the IFN response and return to a normal homeostatic state. Such built-in negative regulatory mechanisms are frequently hijacked by viruses such as the Hepatitis C virus (HCV) to increase viral replication and productive infections. We and others have shown that long non-coding RNAs (lncRNAs) play prominent roles in regulation of the IFN response. Activation of the IFN cascade alters the expression of a large number of lncRNAs, many of which are directly induced by the JAK/STAT pathway and thus, resemble the well-studied protein-coding interferon-stimulated genes (ISGs). While only a handful of IFN- and virally induced lncRNAs have been characterized, recent studies have identified several lncRNAs that act as positive or negative regulators of expression of ISGs during the IFN response. A number of such regulatory lncRNAs have multiple ISG targets, while others act on a single neighboring ISG. Another group of studied lncRNAs act further upstream and regulate the expression of IFN genes or factors that sense the presence of viral genome or replication products. The large number of unstudied IFN- and virally induced lncRNAs makes it highly likely that future studies will reveal a much greater share for this class of transcripts in regulation of the antiviral response. In addition to their physiological roles, the expression of such lncRNAs is frequently modulated by virally encoded factors to interfere with the antiviral response and promote viral replication, thus making them ideal targets for therapeutic intervention

    Characterization of the catalytic activity of U2 and U6 snRNAs

    No full text
    Removal of introns from pre-messenger RNAs in eukaryotes is carried out by the spliceosome, an assembly of a large number of proteins and five small nuclear RNAs (snRNAs). We showed previously that an in vitro transcribed and assembled base-paired complex of U2 and U6 snRNA segments catalyzes a reaction that resembles the first step of splicing. Upon incubation with a short RNA oligonucleotide containing the consensus sequence of the pre-mRNA branch site, the U2/U6 complex catalyzed a reaction between the 2′ OH of a bulged adenosine and a phosphate in the catalytically important AGC triad of U6, leading to the formation of an X-shaped product, RNA X, apparently linked by an unusual phosphotriester bond. Here we characterize this splicing-related reaction further, showing that RNA X formation is an equilibrium reaction, and that the low yield of the reaction likely reflects an unfavorable equilibrium coefficient. Consistent with a phosphotriester linkage, RNA X is highly alkali-sensitive, but only mildly acid-sensitive. We also show that mutations in the AGC sequence of U6 can have significant effects on RNA X formation, further extending the similarities between splicing and RNA X formation. We also demonstrate that pseudouridylation of U2 enhances RNA X formation, and that U6 snRNA purified from nuclear extracts is capable of forming RNA X. Our data suggest that the ability to form RNA X might be an intrinsic property of spliceosomal snRNAs

    The use of simple model systems to study spliceosomal catalysis

    No full text
    Since direct analysis of many aspects of spliceosomal function is greatly hindered by the daunting complexity of the spliceosome, the development of functionally validated simple model systems can be of great value. The critical role played by a base-paired complex of U6 and U2 snRNAs in splicing in vivo suggests that this complex could be a suitable starting point for the development of such a simple model system. However, several criteria must be satisfied before such a snRNA-based in vitro system can be considered a valid model for the spliceosomal catalytic core, including similarities at the level of reaction chemistry and cationic and sequence requirements. Previous functional analyses of in vitro assembled base-paired complexes of human U2 and U6 snRNAs have been promising, providing insight into catalysis. Furthermore, they strongly suggest that with further optimization, these RNAs might indeed be able to recapitulate the function of the spliceosomal catalytic core, thus opening the door to several lines of study not previously possible

    Protein-free spliceosomal snRNAs catalyze a reaction that resembles the first step of splicing

    No full text
    Splicing of introns from mRNA precursors is a two-step reaction performed by the spliceosome, an immense cellular machine consisting of over 200 different proteins and five small RNAs (snRNAs). We previously demonstrated that fragments of two of these RNAs, U6 and U2, can catalyze by themselves a splicing-related reaction, involving one of the two substrates of the first step of splicing, the branch site substrate. Here we show that these same RNAs can catalyze a reaction between RNA sequences that resemble the 5′ splice site and the branch site, the two reactants of the first step of splicing. The reaction is dependent on the sequence of the 5′ splice site consensus sequence and the catalytically essential domains of U6, and thus it resembles the authentic splicing reaction. Our results demonstrate the ability of protein-free snRNAs to recognize the sequences involved in the first splicing step and to perform splicing-related catalysis between these two pre-mRNA-like substrates

    The lncRNA BORG: a novel inducer of TNBC metastasis, chemoresistance, and disease recurrence

    No full text
    Although greater than 90% of breast cancer-related mortality can be attributed to metastases, the molecular mechanisms underpinning the dissemination of primary breast tumor cells and their ability to establish malignant lesions in distant tissues remain incompletely understood. Genomic and transcriptomic analyses identified a class of transcripts called long noncoding RNA (lncRNA), which interact both directly and indirectly with key components of gene regulatory networks to alter cell proliferation, invasion, and metastasis. We identified a pro-metastatic lncRNA BMP/OP-Responsive Gene (BORG) whose aberrant expression promotes metastatic relapse by reactivating proliferative programs in dormant disseminated tumor cells (DTCs). BORG expression is broadly and strongly induced by environmental and chemotherapeutic stresses, a transcriptional response that facilitates the survival of DTCs. Transcriptomic reprogramming in response to BORG resulted in robust signaling via survival and viability pathways, as well as decreased activation of cell death pathways. As such, BORG expression acts as a (1) marker capable of predicting which breast cancer patients are predisposed to develop secondary metastatic lesions; and (2) unique therapeutic target to maximize chemosensitivity of DTCs. Here we review the molecular and cellular factors that contribute to the pathophysiological activities of BORG during its regulation of breast cancer metastasis, chemoresistance, and disease recurrence
    corecore