280 research outputs found

    Comparative experimental and Density Functional Theory (DFT) study of the physical properties of MgB2 and AlB2

    Full text link
    In present study, we report an inter-comparison of various physical and electronic properties of MgB2 and AlB2. Interestingly, the sign of S(T) is +ve for MgB2 the same is -ve for AlB2. This is consistent our band structure plots. We fitted the experimental specific heat of MgB2 to Debye Einstein model and estimated the value of Debye temperature (theta) and Sommerfeld constant (gamma) for electronic specific heat. Further, from gamma the electronic density of states (DOS) at Fermi level N(EF) is calculated. From the ratio of experimental N (EF) and the one being calculated from DFT, we obtained value of Lembda to be 1.84, thus placing MgB2 in the strong coupling BCS category. The electronic specific heat of MgB2 is also fitted below Tc using pi-model and found that it is a two gap superconductor. The calculated values of two gaps are in good agreement with earlier reports. Our results clearly demonstrate that the superconductivity of MgB2 is due to very large phonon contribution from its stretched lattice. The same two effects are obviously missing in AlB2 and hence it is not superconducting. DFT calculations demonstrated that for MgB2 the majority of states come from Sigma and Pi 2p states of boron on the other hand Sigma band at Fermi level for AlB2 is absent. This leads to a weak electron phonon coupling and also to hole deficiency as Pi bands are known to be of electron type and hence obviously the AlB2 is not superconducting. The DFT calculations are consistent with the measured physical properties of the studied borides, i.e., MgB2 and AlB2Comment: 16 pages Text + Figs: comments/suggestions welcome ([email protected])/www.freewebs.com/vpsawana

    Effect of PVA doping on flux pinning in Bulk MgB2

    Full text link
    The synthesis and characterization of PVA (Poly Vinyl Acetate) doped bulk MgB2 superconductor is reported here. PVA is used as a Carbon source. PVA doping effects made two distinguishable contributions: first enhancement of Jc field performance and second an increase in Hc2 value, both because of carbon incorporation into MgB2 crystal lattice. The susceptibility measurement reveals that Tc decreased from 37 to 36 K. Lattice parameter a decreased from 3.085 A to 3.081 A due to the partial substitution of Carbon at Boron site. PVA doped sample exhibited the Jc values greater than 10^5 A/cm2 at 5 & 10 K at low fields; which is almost 3 times higher than the pure one, while at high fields the Jc is increased by an order of magnitude in comparison to pure MgB2. From R(T)H measurements we found higher Tc values under magnetic field for doped sample; indicating an increase in Hc2. Also the magnetization measurements exhibited a significant enhancement in Hirr value. The improved performance of PVA doped MgB2 can be attributed to the substitution of carbon at boron site in parent MgB2 and the resulting impact on the carrier density and impurity scattering. The improved flux pinning behavior could easily be seen from reduced flux pinning force plots.Comment: 14 Pages of Text + Figs. To appear in Physica

    Synthesis of SmFeAsO by an Easy and Versatile Route and its Physical Property Characterization

    Get PDF
    We report synthesis, structure, electrical transport and heat capacity of SmFeAsO. The title compound is synthesized by one-step encapsulation of stoichiometric FeAs, Sm, and Sm2O3 in an evacuated (10-5 Torr) quartz tube by prolong (72 hours) annealing at 1100oC. The as synthesized compound is crystallized in tetragonal structure with P4/nmm space group having lattice parameters a = 3.93726(33) A and c = 8.49802(07) A. The resistance (R-T) measurements on the compound exhibited ground state spin-density-wave (SDW)-like metallic steps below 140 K. Heat capacity CP(T) measurements on the title compound, showed an anomaly at around 140 K, which is reminiscent of the SDW ordering of the compound. At lower temperatures the CP(T) shows a clear peak at around 4.5 K. At lower temperature below 20 K, Cp(T) is also measured under an applied field of 7 Tesla. It is concluded that the CP(T) peak at 4.5 K is due to the anti-ferromagnetic(AFM) ordering of Sm3+ spins. These results are in confirmation with ordering of Sm in Sm2-xCexCuO4.Comment: 9 pages Text + Figs Contact Author ([email protected]

    Persistently high HIV seroprevalence among adult tuberculosis patients at a tertiary care centre in Delhi

    Get PDF
    Background & Objective: This study was designed to estimate HIV seroprevalence among tuberculosis patients presenting to tertiary care centre in Delhi. Methods: Cross-sectional prevalence study among all patients presenting to the inpatient and outpatient departments of All India Institute of Medical Sciences (AIIMS), New Delhi, and receiving anti-tuberculosis treatment from May 2003 to April 2005. Results: Of the 448 patients who presented to the TB clinic during the study period, 23 (5.1%) were previously tested HIV-positive. An additional 21 patients (4.6%) refused testing, and 30 (6.7%) were lost to follow up. Of the remaining 374 patients who consented to testing, 31 (8.3%) were found to be HIV-positive. Risk factors for HIV seropositivity included high-risk sexual behaviours (48% in HIV-TB co-infected vs. 6% in TB infected patients, P<0.001) and history of blood transfusion (23% vs. 5%; P=0.002). Interpretation & Conclusion: Previous studies from the same hospital published in 2000 and 2003 reported HIV seroprevalence among TB patients to be 0.4 and 9.4 per cent respectively. The current study documents a persistently high seropositivity among TB patients. These results emphasize the acute need for improved detection and treatment for HIV among TB patients in northern India

    Anomalous heat capacity and X-ray photoelectron spectroscopy of Superconducting FeSe1/2Te1/2

    Get PDF
    The bulk polycrystalline sample FeSe1/2Te1/2 is synthesized by solid state reaction route in an evacuated sealed quartz tube at 750 oC. The presence of superconductivity is confirmed through magnetization/thermoelectric/resistivity studies. It is found that the superconducting transition temperature (Tc) is around 12 K. Heat capacity (Cp) of superconducting FeSe1-xTex exhibited a hump near Tc, instead of well defined Lambda transition. X-ray Photo electron spectroscopy (XPS) studies revealed well defined positions for divalent Fe, Se and Te but with sufficient hybridization of Fe (2p) and Se/Te (3d) core levels. In particular divalent Fe is shifted to higher BE (binding energy) and Se and Te to lower. The situation is similar to that as observed earlier for famous Cu based HTSc (High Tc superconductors), where Cu (3d) orbital hybridizes with O (2p). We also found the satellite peak of Fe at 712.00 eV, which is attributed to charge carrier localization induced by Fe at 2c site.Comment: 12 pages text + Figs contact Author-VPS Awana (www.freewebs.com/vpsawana
    • …
    corecore