64 research outputs found

    Temporal Support of Regular Expressions in Sequential Pattern Mining

    Get PDF
    Classic algorithms for sequential pattern discovery,return all frequent sequences present in a database. Since, in general, only a few ones are interesting from a user\u27s point of view, languages based on regular expressions (RE) have been proposed to restrict frequent sequences to the ones that satisfy user-specified constraints. Although the support of a sequence is computed as the number of data-sequences satisfying a pattern with respect to the total number of data-sequences in the database, once regular expressions come into play, new approaches to the concept of support are needed. For example, users may be interested in computing the support of the RE as a whole, in addition to the one of a particular pattern. As a simple example, the expression (A∣B).C(A|B).C is satisfied by sequences like A.C or B.C. Even though the semantics of this RE suggests that both of them are equally interesting to the user, if neither of them verifies a minimum support although together they do), they would not be retrieved. Also, when the items are frequently updated, the traditional way of counting support in sequential pattern mining may lead to incorrect (or, at least incomplete), conclusions. For example, if we are looking for the support of the sequence A.B, where A and B are two items such that A was created after B, all sequences in the database that were completed before A was created, can never produce a match. Therefore, accounting for them would underestimate the support of the sequence A.B. The problem gets more involved if we are interested in categorical sequential patterns. In light of the above, in this paper we propose to revise the classic notion of support in sequential pattern mining, introducing the concept of temporal support of regular expressions, intuitively defined as the number of sequences satisfying a target pattern, out of the total number of sequences that could have possibly matched such pattern, where the pattern is defined as a RE over complex items (i.e., not only item identifiers, but also attributes and functions). We present and discuss a theoretical framework for these novel notion of support

    Dimensional enrichment of statistical linked open data

    Get PDF
    On-Line Analytical Processing (OLAP) is a data analysis technique typically used for local and well-prepared data. However, initiatives like Open Data and Open Government bring new and publicly available data on the web that are to be analyzed in the same way. The use of semantic web technologies for this context is especially encouraged by the Linked Data initiative. There is already a considerable amount of statistical linked open data sets published using the RDF Data Cube Vocabulary (QB) which is designed for these purposes. However, QB lacks some essential schema constructs (e.g., dimension levels) to support OLAP. Thus, the QB4OLAP vocabulary has been proposed to extend QB with the necessary constructs and be fully compliant with OLAP. In this paper, we focus on the enrichment of an existing QB data set with QB4OLAP semantics. We first thoroughly compare the two vocabularies and outline the benefits of QB4OLAP. Then, we propose a series of steps to automate the enrichment of QB data sets with specific QB4OLAP semantics; being the most important, the definition of aggregate functions and the detection of new concepts in the dimension hierarchy construction. The proposed steps are defined to form a semi-automatic enrichment method, which is implemented in a tool that enables the enrichment in an interactive and iterative fashion. The user can enrich the QB data set with QB4OLAP concepts (e.g., full-fledged dimension hierarchies) by choosing among the candidate concepts automatically discovered with the steps proposed. Finally, we conduct experiments with 25 users and use three real-world QB data sets to evaluate our approach. The evaluation demonstrates the feasibility of our approach and shows that, in practice, our tool facilitates, speeds up, and guarantees the correct results of the enrichment process.Peer ReviewedPostprint (author's final draft
    • …
    corecore