20 research outputs found

    Measurement of the 236^{236}U fission cross section and angular distributions of fragments from fission of 235^{235}U and 236^{236}U in the neutron energy range of 0.3-500 MeV

    Full text link
    The 236^{236}U fission cross section and the angular distributions of fragments from fission of 235^{235}U and 236^{236}U were measured for incident neutron energies from 0.3 MeV to 500 MeV on the time-of-flight spectrometer of the neutron complex GNEIS at the NRC "Kurchatov Institute" -- PNPI. Fission fragments were registered using position-sensitive low-pressure multiwire counters. In the neutron energy range above 20 MeV, the angular distributions of 236^{236}U fission fragments were measured for the first time. The fission cross section of 236^{236}U(n,f)(n,f) was measured relative to the fission cross section of 235^{235}U(n,f)(n,f), which is an accepted international standard. The obtained data are compared with the results of other experimental works. Theoretical calculations of the fission cross section and the anisotropy of angular distribution of fission fragments for the 236^{236}U(n,f)(n,f) reaction performed within the framework of our approach are presented and discussed.Comment: 21 pages, 22 figures, revised version accepted for publication in Phys. Rev.

    A measurement of the differential cross section for the two-body photodisintegration of 3He at theta_LAB = 90deg using tagged photons in the energy range 14 -- 31 MeV

    Full text link
    The two-body photodisintegration of 3He has been investigated using tagged photons with energies from 14 -- 31 MeV at MAX-lab in Lund, Sweden. The two-body breakup channel was unambiguously identified by the (nonsimultaneous) detection of both protons and deuterons. This approach was made feasible by the over-determined kinematic situation afforded by the tagged-photon technique. Proton- and deuteron-energy spectra were measured using four silicon surface-barrier detector telescopes located at a laboratory angle of 90deg with respect to the incident photon-beam direction. Average statistical and systematic uncertainties of 5.7% and 6.6% in the differential cross section were obtained for 11 photon-energy bins with an average width of 1.2 MeV. The results are compared to previous experimental data measured at comparable photon energies as well as to the results of two recent Faddeev calculations which employ realistic potential models and take into account three-nucleon forces and final-state interactions. Both the accuracy and precision of the present data are improved over the previous measurements. The data are in good agreement with most of the previous results, and favor the inclusion of three-nucleon forces in the calculations.Comment: 12 pages, 13 figures; further Referee comments addresse

    Fission-Residues Produced in the Spallation Reaction 238U+p at 1 A GeV

    Full text link
    Fission fragments from 1 A GeV 238U projectiles irradiating a hydrogen target were investigated by using the fragment separator FRS for magnetic selection of reaction products including ray-tracing and DE-ToF techniques. The momentum spectra of 733 identified fragments were analysed to provide isotopic production cross sections, fission-fragment velocities and recoil momenta of the fissioning parent nuclei. Besides their general relevance, these quantities are also demanded for applications. Calculations and simulations with codes commonly used and recently developed or improved are compared to the data.Comment: 60 pages, 21 figures, 4 tables, 2 appendices (15 pages

    Angular distributions and anisotropy of fission fragments from neutron-induced fission in intermediate energy range 1–200 MeV

    No full text
    Angular distributions of fission fragments from the neutron-induced fission of 232Th, 233U, 235U, 238U and 209Bi have been measured in the energy range 1–200 MeV at the neutron TOF spectrometer GNEIS based on the spallation neutron source at 1 GeV proton synchrocyclotron of the PNPI (Gatchina, Russia). The multiwire proportional counters have been used as a position sensitive fission fragment detector. A description of the experimental equipment and measurement procedure is given. The anisotropy of fission fragments deduced from the data on measured angular distributions is presented in comparison with experimental data of other authors, first of all, the recent data from WNR at LANSCE (Los Alamos, USA) and n_TOF(CERN)

    Angular distributions and anisotropy of fission fragments from neutron-induced fission in intermediate energy range 1–200 MeV

    No full text
    Angular distributions of fission fragments from the neutron-induced fission of 232Th, 233U, 235U, 238U and 209Bi have been measured in the energy range 1–200 MeV at the neutron TOF spectrometer GNEIS based on the spallation neutron source at 1 GeV proton synchrocyclotron of the PNPI (Gatchina, Russia). The multiwire proportional counters have been used as a position sensitive fission fragment detector. A description of the experimental equipment and measurement procedure is given. The anisotropy of fission fragments deduced from the data on measured angular distributions is presented in comparison with experimental data of other authors, first of all, the recent data from WNR at LANSCE (Los Alamos, USA) and n_TOF(CERN)
    corecore