16 research outputs found

    A status report on RNAi therapeutics

    Get PDF
    Fire and Mello initiated the current explosion of interest in RNA interference (RNAi) biology with their seminal work in Caenorhabditis elegans. These observations were closely followed by the demonstration of RNAi in Drosophila melanogaster. However, the full potential of these new discoveries only became clear when Tuschl and colleagues showed that 21-22 bp RNA duplexes with 3" overhangs, termed small interfering (si)RNAs, could reliably execute RNAi in a range of mammalian cells. Soon afterwards, it became clear that many different human cell types had endogenous machinery, the RNA-induced silencing complex (RISC), which could be harnessed to silence any gene in the genome. Beyond the availability of a novel way to dissect biology, an important target validation tool was now available. More importantly, two key properties of the RNAi pathway - sequence-mediated specificity and potency - suggested that RNAi might be the most important pharmacological advance since the advent of protein therapeutics. The implications were profound. One could now envisage selecting disease-associated targets at will and expect to suppress proteins that had remained intractable to inhibition by conventional methods, such as small molecules. This review attempts to summarize the current understanding on siRNA lead discovery, the delivery of RNAi therapeutics, typical in vivo pharmacological profiles, preclinical safety evaluation and an overview of the 14 programs that have already entered clinical practice

    Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis

    Full text link
    BACKGROUND Patisiran, an investigational RNA interference therapeutic agent, specifically inhibits hepatic synthesis of transthyretin. METHODS In this phase 3 trial, we randomly assigned patients with hereditary transthyretin amyloidosis with polyneuropathy, in a 2:1 ratio, to receive intravenous patisiran (0.3 mg per kilogram of body weight) or placebo once every 3 weeks. The primary end point was the change from baseline in the modified Neuropathy Impairment Score+7 (mNIS+7; range, 0 to 304, with higher scores indicating more impairment) at 18 months. Other assessments included the Norfolk Quality of Life-Diabetic Neuropathy (Norfolk QOL-DN) questionnaire (range, −4 to 136, with higher scores indicating worse quality of life), 10-m walk test (with gait speed measured in meters per second), and modified body-mass index (modified BMI, defined as [weight in kilograms divided by square of height in meters]×albumin level in grams per liter; lower values indicated worse nutritional status). RESULTS A total of 225 patients underwent randomization (148 to the patisiran group and 77 to the placebo group). The mean (±SD) mNIS+7 at baseline was 80.9±41.5 in the patisiran group and 74.6±37.0 in the placebo group; the least-squares mean (±SE) change from baseline was −6.0±1.7 versus 28.0±2.6 (difference, −34.0 points; P<0.001) at 18 months. The mean (±SD) baseline Norfolk QOL-DN score was 59.6±28.2 in the patisiran group and 55.5±24.3 in the placebo group; the least-squares mean (±SE) change from baseline was −6.7±1.8 versus 14.4±2.7 (difference, −21.1 points; P<0.001) at 18 months. Patisiran also showed an effect on gait speed and modified BMI. At 18 months, the least-squares mean change from baseline in gait speed was 0.08±0.02 m per second with patisiran versus −0.24±0.04 m per second with placebo (difference, 0.31 m per second; P<0.001), and the least-squares mean change from baseline in the modified BMI was −3.7±9.6 versus −119.4±14.5 (difference, 115.7; P<0.001). Approximately 20% of the patients who received patisiran and 10% of those who received placebo had mild or moderate infusion-related reactions; the overall incidence and types of adverse events were similar in the two groups. CONCLUSIONS In this trial, patisiran improved multiple clinical manifestations of hereditary transthyretin amyloidosis

    Alefacept treatment in psoriatic arthritis - Reduction of the effector T cell population in peripheral blood and synovial tissue is associated with improvement of clinical signs of arthritis

    No full text
    Objective. To investigate whether alefacept (a fully human lymphocyte function-associated antigen 3 [LFA-3]/IgG1 fusion protein that blocks the LFA-3/CD2 interaction) is able to reduce the signs and symptoms of joint inflammation in patients with active psoriatic arthritis (PsA). Methods. Eleven patients with active PsA were treated with alefacept for 12 weeks in an open-label and explorative study. Clinical joint assessment and laboratory assessments were performed at baseline and after 4, 9, 12, and 16 weeks of treatment. Serial synovial tissue (ST) biopsy specimens from an inflamed index joint (knee, ankle, wrist, or metacarpophalangeal joint) were obtained by arthroscopy at baseline and after 4 and 12 weeks of treatment. Results. At the completion of treatment, 6 of 11 patients (55%) fulfilled the Disease Activity Score (DAS) response criteria. Nine patients (82%) fulfilled the DAS response criteria at any point during the study. There was a statistically significant reduction in CD4+ lymphocytes (P <0.05), CD8+ lymphocytes (P = 0.05), and CD68+ macropliages (P <0.02) in the ST after 12 weeks of treatment compared with baseline. The ST and peripheral blood of those patients fulfilling the DAS response criteria contained more CD45RO+ cells at baseline and displayed a significant reduction in these cells compared with nonresponding patients. Conclusion. The changes in ST, together with the improvement in clinical joint scores, after treatment with alefacept support the hypothesis that T cell activation plays an important role in this chronic inflammatory disease. Furthermore, since alefacept, a T cell-specific agent, led to decreased macrophage infiltration, the data indicate that T cells are highly involved in synovial inflammation in Ps

    Phase 1/2 Study of Lumasiran for Treatment of Primary Hyperoxaluria Type 1: A Placebo-Controlled Randomized Clinical Trial

    No full text
    BACKGROUND AND OBJECTIVES: In the rare disease primary hyperoxaluria type 1, overproduction of oxalate by the liver causes kidney stones, nephrocalcinosis, kidney failure, and systemic oxalosis. Lumasiran, an RNA interference therapeutic, suppresses glycolate oxidase, reducing hepatic oxalate production. The objective of this first-in-human, randomized, placebo-controlled trial was to evaluate the safety, pharmacokinetic, and pharmacodynamic profiles of lumasiran in healthy participants and patients with primary hyperoxaluria type 1. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: This phase 1/2 study was conducted in two parts. In part A, healthy adults randomized 3:1 received a single subcutaneous dose of lumasiran or placebo in ascending dose groups (0.3-6 mg/kg). In part B, patients with primary hyperoxaluria type 1 randomized 3:1 received up to three doses of lumasiran or placebo in cohorts of 1 or 3 mg/kg monthly or 3 mg/kg quarterly. Patients initially assigned to placebo crossed over to lumasiran on day 85. The primary outcome was incidence of adverse events. Secondary outcomes included pharmacokinetic and pharmacodynamic parameters, including measures of oxalate in patients with primary hyperoxaluria type 1. Data were analyzed using descriptive statistics. RESULTS: Thirty-two healthy participants and 20 adult and pediatric patients with primary hyperoxaluria type 1 were enrolled. Lumasiran had an acceptable safety profile, with no serious adverse events or study discontinuations attributed to treatment. In part A, increases in mean plasma glycolate concentration, a measure of target engagement, were observed in healthy participants. In part B, patients with primary hyperoxaluria type 1 had a mean maximal reduction from baseline of 75% across dosing cohorts in 24-hour urinary oxalate excretion. All patients achieved urinary oxalate levels ≤1.5 times the upper limit of normal. CONCLUSIONS: Lumasiran had an acceptable safety profile and reduced urinary oxalate excretion in all patients with primary hyperoxaluria type 1 to near-normal levels. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Study of Lumasiran in Healthy Adults and Patients with Primary Hyperoxaluria Type 1, NCT02706886
    corecore