857 research outputs found

    Placing Confidence Limits on Polarization Measurements

    Full text link
    The determination of the true source polarization given a set of measurements is complicated by the requirement that the polarization always be positive. This positive bias also hinders construction of upper limits, uncertainties, and confidence regions, especially at low signal-to-noise levels. We generate the likelihood function for linear polarization measurements and use it to create confidence regions and upper limits. This is accomplished by integrating the likelihood function over the true polarization (parameter space), rather than the measured polarization (data space). These regions are valid for both low and high signal-to-noise measurements.Comment: 8 pages, 3 figures, 1 table, submitted to PAS

    The Removal of Artificially Generated Polarization in SHARP Maps

    Get PDF
    We characterize the problem of artificial polarization for the Submillimeter High Angular Resolution Polarimeter (SHARP) through the use of simulated data and observations made at the Caltech Submillimeter Observatory (CSO). These erroneous, artificial polarization signals are introduced into the data through misalignments in the bolometer sub-arrays plus pointing drifts present during the data-taking procedure. An algorithm is outlined here to address this problem and correct for it, provided that one can measure the degree of the sub-array misalignments and telescope pointing drifts. Tests involving simulated sources of Gaussian intensity profile indicate that the level of introduced artificial polarization is highly dependent upon the angular size of the source. Despite this, the correction algorithm is effective at removing up to 60% of the artificial polarization during these tests. The analysis of Jupiter data taken in January 2006 and February 2007 indicates a mean polarization of 1.44%+/-0.04% and 0.95%+/-0.09%, respectively. The application of the correction algorithm yields mean reductions in the polarization of approximately 0.15% and 0.03% for the 2006 and 2007 data sets, respectively.Comment: 19 pages, 7 figure

    Relative efficiency of split-marker versus double-crossover replacement protocols for production of deletion mutants in strain PH-1 of Fusarium graminearum

    Get PDF
    The split-marker (SM) protocol has become a popular method for production of knockout mutations in fungi. We used Southern hybridization to compare the performance and efficiency of the SM protocol with the more traditional double-crossover intact marker (IM) method for creating deletions of the mating type genes in Fusarium graminearum. Both methods successfully produced knockouts at a rate of between 24 and 75%: the SM method produced mutants more efficiently for larger constructs (\u3e1 kb), but it was similar to IM for a smaller construct that was 865 bp. Both methods also produced strains with additional ectopic integrations at a similar rate of approximately 10%, but on average the SM produced a higher number of independent integrations in those strains. Ectopic integrations produce off-site mutations, and strains with multiple integrations are less desirable since it is more difficult to remove them by backcrossing. Southern hybridizations will be generally superior to PCR to identify strains with fewer ectopic integrations for experimental purposes

    Magnetic Field Structure around Low-Mass Class 0 Protostars: B335, L1527 and IC348-SMM2

    Full text link
    We report new 350 micron polarization observations of the thermal dust emission from the cores surrounding the low-mass, Class 0 YSOs L1527, IC348-SMM2 and B335. We have inferred magnetic field directions from these observations, and have used them together with results in the literature to determine whether magnetically regulated core-collapse and star-formation models are consistent with the observations. These models predict a pseudo-disk with its symmetry axis aligned with the core magnetic field. The models also predict a magnetic field pinch structure on a scale less than or comparable to the infall radii for these sources. In addition, if the core magnetic field aligns (or nearly aligns) the core rotation axis with the magnetic field before core collapse, then the models predict the alignment (or near alignment) of the overall pinch field structure with the bipolar outflows in these sources. We show that if one includes the distorting effects of bipolar outflows on magnetic fields, then in general the observational results for L1527 and IC348-SMM2 are consistent with these magnetically regulated models. We can say the same for B335 only if we assume the distorting effects of the bipolar outflow on the magnetic fields within the B335 core are much greater than for L1527 and IC348-SMM2. We show that the energy densities of the outflows in all three sources are large enough to distort the magnetic fields predicted by magnetically regulated models.Comment: Accepted for publication in The Astrophysical Journa

    Design and Initial Performance of SHARP, a Polarimeter for the SHARC-II Camera at the Caltech Submillimeter Observatory

    Get PDF
    We have developed a fore-optics module that converts the SHARC-II camera at the Caltech Submillimeter Observatory into a sensitive imaging polarimeter at wavelengths of 350 and 450 microns. We refer to this module as "SHARP". SHARP splits the incident radiation into two orthogonally polarized beams that are then re-imaged onto opposite ends of the 32 x 12 pixel detector array in SHARC-II. A rotating half-wave plate is used just upstream from the polarization-splitting optics. The effect of SHARP is to convert SHARC-II into a dual-beam 12 x 12 pixel polarimeter. A novel feature of SHARP's design is the use of a crossed grid in a submillimeter polarimeter. Here we describe the detailed optical design of SHARP and present results of tests carried out during our first few observing runs. At 350 microns, the beam size (9 arcseconds), throughput (75%), and instrumental polarization (< 1%) are all very close to our design goals.Comment: submitted to Applied Optic

    Far-infrared polarimetry from the Stratospheric Observatory for Infrared Astronomy

    Get PDF
    Multi-wavelength imaging polarimetry at far-infrared wavelengths has proven to be an excellent tool for studying the physical properties of dust, molecular clouds, and magnetic fields in the interstellar medium. Although these wavelengths are only observable from airborne or space-based platforms, no first-generation instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is presently designed with polarimetric capabilities. We study several options for upgrading the High-resolution Airborne Wideband Camera (HAWC) to a sensitive FIR polarimeter. HAWC is a 12 x 32 pixel bolometer camera designed to cover the 53 - 215 micron spectral range in 4 colors, all at diffraction-limited resolution (5 - 21 arcsec). Upgrade options include: (1) an external set of optics which modulates the polarization state of the incoming radiation before entering the cryostat window; (2) internal polarizing optics; and (3) a replacement of the current detector array with two state-of-the-art superconducting bolometer arrays, an upgrade of the HAWC camera as well as polarimeter. We discuss a range of science studies which will be possible with these upgrades including magnetic fields in star-forming regions and galaxies and the wavelength-dependence of polarization.Comment: 12 pages, 5 figure

    Statistical Assessment of Shapes and Magnetic Field Orientations in Molecular Clouds through Polarization Observations

    Get PDF
    We present a novel statistical analysis aimed at deriving the intrinsic shapes and magnetic field orientations of molecular clouds using dust emission and polarization observations by the Hertz polarimeter. Our observables are the aspect ratio of the projected plane-of-the-sky cloud image, and the angle between the mean direction of the plane-of-the-sky component of the magnetic field and the short axis of the cloud image. To overcome projection effects due to the unknown orientation of the line-of-sight, we combine observations from 24 clouds, assuming that line-of-sight orientations are random and all are equally probable. Through a weighted least-squares analysis, we find that the best-fit intrinsic cloud shape describing our sample is an oblate disk with only small degrees of triaxiality. The best-fit intrinsic magnetic field orientation is close to the direction of the shortest cloud axis, with small (~24 deg) deviations toward the long/middle cloud axes. However, due to the small number of observed clouds, the power of our analysis to reject alternative configurations is limited.Comment: 14 pages, 8 figures, accepted for publication in MNRA

    Galactic foreground contributions to the 5-year Wilkinson Microwave Anisotropy Probe maps

    Get PDF
    We compute the cross-correlation between intensity and polarization from the 5-year Wilkinson Microwave Anisotropy Probe (WMAP5) data in different sky regions with respect to template maps for synchrotron, dust and free–free emission. We derive the frequency dependence and polarization fraction for all three components in 48 different sky regions of HEALPix (N_(side)= 2) pixelization. The anomalous emission associated with dust is clearly detected in intensity over the entire sky at the K (23-GHz) and Ka (33-GHz) WMAP bands, and is found to be the dominant foreground at low Galactic latitudes, between b =−40° and +10°. The synchrotron spectral index obtained from the K and Ka WMAP bands from an all-sky analysis is β_s=−3.32 ± 0.12 for intensity and β_s=−3.01 ± 0.03 for polarized intensity. The polarization fraction of the synchrotron emission is constant in frequency and increases with latitude from ≈5 per cent near the Galactic plane up to ≈40 per cent in some regions at high latitudes; the average value for |b| 20°, it is 19.3 ± 0.8 (stat) ± 0.5 (sys) per cent. Anomalous dust and free–free emissions appear to be relatively unpolarized. Monte Carlo simulations showed that there were biases of the method due to cross-talk between the components, at up to ≈5 per cent in any given pixel, and ≈1.5 per cent on average, when the true polarization fraction is low (a few per cent or less). Nevertheless, the average polarization fraction of dust-correlated emission at the K band is 3.2 ± 0.9 (stat) ± 1.5 (sys) per cent or less than 5 per cent at 95 per cent confidence. When comparing real data with simulations, eight regions show a detected polarization above the 99th percentile of the distribution from simulations with no input foreground polarization, six of which are detected at above 2σ and display polarization fractions between 2.6 and 7.2 per cent, except for one anomalous region, which has 32 ± 12 per cent. The dust polarization values are consistent with the expectation from spinning dust emission, but polarized dust emission from magnetic-dipole radiation cannot be ruled out. Free–free emission was found to be unpolarized with an upper limit of 3.4 per cent at 95 per cent confidence
    • …
    corecore