
Fungal Genetics Reports Fungal Genetics Reports 

Volume 65 Article 1 

Relative efficiency of split-marker versus double-crossover Relative efficiency of split-marker versus double-crossover 

replacement protocols for production of deletion mutants in strain replacement protocols for production of deletion mutants in strain 

PH-1 of Fusarium graminearum PH-1 of Fusarium graminearum 

Sladana Bec 
University of Kentucky 

Gabdiel E. Yulfo-Soto 
University of Kentucky 

Lisa J. Vaillancourt 
University of Kentucky 

Follow this and additional works at: https://newprairiepress.org/fgr 

 Part of the Agriculture Commons 

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License. 

Recommended Citation Recommended Citation 
Bec, S., G.E. Yulfo-Soto, and L.J. Vaillancourt (2021) "Relative efficiency of split-marker versus double-
crossover replacement protocols for production of deletion mutants in strain PH-1 of Fusarium 
graminearum," Fungal Genetics Reports: Vol. 65, Article 1. https://doi.org/10.4148/1941-4765.2175 

This Regular Paper is brought to you for free and open access by New Prairie Press. It has been accepted for 
inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, 
please contact cads@k-state.edu. 

https://newprairiepress.org/fgr
https://newprairiepress.org/fgr/vol65
https://newprairiepress.org/fgr/vol65/iss1/1
https://newprairiepress.org/fgr?utm_source=newprairiepress.org%2Ffgr%2Fvol65%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=newprairiepress.org%2Ffgr%2Fvol65%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.4148/1941-4765.2175
mailto:cads@k-state.edu


Relative efficiency of split-marker versus double-crossover replacement Relative efficiency of split-marker versus double-crossover replacement 
protocols for production of deletion mutants in strain PH-1 of Fusarium protocols for production of deletion mutants in strain PH-1 of Fusarium 
graminearum graminearum 

Abstract Abstract 
The split-marker (SM) protocol has become a popular method for production of knockout mutations in 
fungi. We used Southern hybridization to compare the performance and efficiency of the SM protocol with 
the more traditional double-crossover intact marker (IM) method for creating deletions of the mating type 
genes in Fusarium graminearum. Both methods successfully produced knockouts at a rate of between 24 
and 75%: the SM method produced mutants more efficiently for larger constructs (>1 kb), but it was 
similar to IM for a smaller construct that was 865 bp. Both methods also produced strains with additional 
ectopic integrations at a similar rate of approximately 10%, but on average the SM produced a higher 
number of independent integrations in those strains. Ectopic integrations produce off-site mutations, and 
strains with multiple integrations are less desirable since it is more difficult to remove them by 
backcrossing. Southern hybridizations will be generally superior to PCR to identify strains with fewer 
ectopic integrations for experimental purposes. 
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Abstract 
The split-marker (SM) transformation protocol is popular for production of gene deletion 
mutants in fungi. It has been suggested that this method is more efficient than the more 
traditional double-crossover method (intact-marker: IM), producing a higher percentage 
of targeted deletions versus ectopic integrations. We compared the performance of both 
protocols in F. graminearum strain PH-1. The SM method resulted in a higher percentage 
of deletions for sequences between 1 and 6 kb, but was similar to IM for a smaller 865 bp 
sequence. Both methods produced additional ectopic integrations in 12-13% of the 
deletion strains. SM produced more independent ectopic integrations in these strains than 
IM. This may result in more variability among individual transformants due to off-site 
mutations, as well as complicating their removal by backcrossing. Southern 
hybridizations are helpful for the identification of strains with fewer ectopic integrations.  
Introduction 
Inactivation of a gene by deletion or disruption is an important way to study its function 
(Shafran et al., 2008; Turgeon et al., 2010). Gene deletion via double-crossover 
replacement is usually preferred because it avoids the possibility of residual or restored 
gene function. Gene deletion constructs typically consist of varying amounts of sequence 
from the flanks upstream and downstream of the gene of interest fused to a selectable 
marker gene (hereafter referred to as “intact-marker” (IM) constructs).  Successful gene 
deletion depends on homologous recombination (HR) at double-strand breaks (DSB) 
within each flanking sequence (Hynes, 1996; Krappman, 2007; Weld, 2006). 
Recombination at DSB occurs by one of two DNA repair pathways: homology-directed 
repair (HDR) requires the presence of DNA sequence homology, while non-homologous 
end joining (NHEJ) does not (Cahill et al., 2006; Kanaar et al., 1998; Krappman 2007). 
Saccharomyces cerevisiae uses primarily HDR for DNA repair, and the generation of 
gene deletion mutants by HR is consequently very efficient in this organism (Hua et al., 
1997).  In contrast, many filamentous fungi tend to use the NHEJ mechanism more often.  
This results in a reduced number of transformants in which the gene of interest has been 
replaced by HR, and more strains in which the marker has integrated randomly at an 
ectopic location in the genome (Chaveroche et al., 2000). 
The split-marker (SM) protocol, first applied to yeast (Fairhead et al., 1996), is an 
alternative approach for gene deletion in filamentous fungi (Catlett et al. 2003; de Hoogt 
et al. 2000). For this procedure, fungal protoplasts are transformed with a mixture of two 
DNA fragments, each comprised of DNA flanking one end of the gene of interest fused 
to overlapping segments of a selectable marker gene. To reconstitute a functional 
selectable marker, the SM fragments must undergo HR at three points, and this has been 
reported to increase the efficiency of gene deletion (Fairhead et al., 1996; Catlett et al., 
2003). However, the performance of IM versus SM protocols has been directly compared 
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in very few cases (e.g. Fu et al. 2006), and a detailed examination of integration sites by 
use of Southern hybridization has been rare.  The objective of the current study was to 
use Southern hybridization to compare SM and IM protocols and evaluate their relative 
efficiency for generating gene deletions versus ectopic integrations in strain PH-1 of F. 
graminearum.  For this work we targeted the mating-type locus of F. graminearum which 
has a previously characterized deletion phenotype (Lee et al. 2003).  
Materials and Methods 
Fungal strains and growth conditions: Fusarium graminearum strain PH-1 (NRRL 
31084) was cultured on mung bean agar (MBA) (Bai and Shaner 1996) for 7–10 days at 
23°C under continuous fluorescent light to produce macroconida.  Spore suspensions 
were prepared by adding 2 ml of sterile water to the culture and gently rubbing the 
surface with a sterile plastic micro-pestle. Harvested spores were filtered through glass 
wool, washed twice with sterile water, and adjusted to the desired concentration. 
DNA extraction: Five ml of YEPD medium (20 g dextrose, 20 g bacto-peptone, 10 g 
yeast extract) was inoculated with an 8-mm agar plug taken from the edge of an actively 
growing colony. Cultures were incubated at 25°C for 5–7 days at 250 rpm. Recovered 
mycelia were flash-frozen in liquid nitrogen, lyophilized, and pulverized in individual 2 
ml Eppendorf tubes by using a mini-pestle, or in deep 96-well plates with a 2000 
GENO/Grinder® (Spex Certiprep) (500 strokes/sec for 30 sec). One ml of warm lysis 
buffer (0.5 M NaCl; 1% SDS; 10 mM Tris HCl, pH 7.5; 10 mM EDTA) was added per 
100–200 mg fungal tissue, and samples were incubated at 65°C for 30 min, vortexing 
once during the incubation. After incubation the samples were transferred into individual 
tubes containing 660 µl PCI (25 parts phenol; 24 parts chloroform; 1 part isoamyl 
alcohol), mixed by inverting 4–6 times, then incubated at 65°C for an additional 30 min. 
The contents were mixed once during incubation. The samples were centrifuged in a 
tabletop centrifuge for 20 min at maximum speed to separate the phases. DNA was 
precipitated from the aqueous phase by using 1 volume of isopropanol, and the pellet was 
washed twice with 70% ethanol. The pellet was resuspended in 100 µl of TE, pH 7.9, 
with 2 µl of a 5 mg/ml concentration of RNase A, at 65°C for 1 h.   
Southern hybridizations: PCR amplicons used for probes were gel-purified and labeled 
with radioactive isotope P32 using the Prime-a-gene labeling system (Promega, cat. 
#U1100). Between 1 and 5 µg of the genomic DNA isolated from the fungal strains was 
digested with 20 U of the appropriate restriction enzyme (RE) in a 50 µl reaction. DNA 
was precipitated and resuspended before loading the entire sample onto a 0.8% agarose 
gel made with 0.5X TBE buffer (20X TBE, 1L: 216g Tris base; 110g boric acid; 80 ml 
0.5M EDTA, pH 8.0).  The gel was electrophoresed at 35V in 0.5X TBE for 18-20 hours, 
followed by staining for 30 min in 0.5X TBE plus 5µg/ml EtBr for imaging, and then 
destaining for 30 min with fresh 0.5X TBE.  DNA fragments were transferred from the 
gel to a charged nylon membrane (PALL Life Sciences) by electroblotting with a GENIE 
electroblotter (Idea Scientific) for 2 h at 12V. The DNA on the membrane was denatured 
in 0.4N NaOH for 10 min, then neutralized for 10 min in 2X SSC (20X SSC, 1 L; 175.3g 
NaCl; 88.2g Na3C6H5O7; adjusted to pH 7.0, autoclaved). DNA was fixed to the 
membrane by UV-crosslinking in a Spectrolinker (Spectronics Corporation). The 
membrane was prehybridized at 65°C for 30 min in hybridization buffer (100 mls; 25 ml 
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0.5 M Na2HPO4 pH 7.2; 7 g sodium dodecyl sulfate; 0.2 ml 0.5M EDTA, pH 8.0; stir to 
dissolve, heating if necessary) and then fresh hybridization solution was added together 
with the radioactively labeled probe, and the membrane was hybridized overnight at 
65°C. The membrane was then washed three times with 2X SSC at 65°C for 20 min each, 
blotted dry, wrapped in plastic wrap, and exposed on a Storage Phosphor Screen 
(Molecular Dynamics) at room temperature for up to 3 d. The screen was scanned by 
using a Typhoon Phosphorimager (GE Healthcare).  Membranes were stripped by 
washing for 30 min in 0.4N NaOH, followed by 15 min in 0.1X SSC, 0.1% SDS, at 
45°C. Stripped membranes were rehybridized with probes for the mating-type genes and 
for the hyg gene.  The resulting images were false-colored and overlaid to create the 
figures by using Adobe imaging software.  
Plasmid construction: The strategy for construction of plasmid templates is shown in 
Figure 1.  For each of the genes of interest, 0.6–1.2 kb of each flank was amplified. The 
PCR primers are listed in Table 1, and the PCR parameters used are shown in Table 2. 
The primers were designed manually from the published F. graminearum genome 
(Cuomo et al., 2007).  Primer P2 incorporated a 3’ EcoRI recognition site, and primer P3 
included a 5’ BamHI recognition sequence.  These same RE were used to isolate the 
hygromycin phosphotransferase (hph) selectable marker gene from the donor plasmid 
pBSHyg2. To produce pBSHyg2, the hph gene with the TrpC promoter was first 
recovered from the plasmid pCB1636 (Sweigard et al., 1997) by digesting with SalI. 
Then, the Sal1 fragment was blunt-ended and ligated into the pBluescript plasmid 
digested with SmaI. PCR amplicons and the restricted hph gene fragment from pBSHyg2 
were gel-purified with a gel extraction kit (QIAquick Gel Extraction Kit, Qiagen). 
Amplicons were digested with the appropriate RE and then gel-purified.  The restricted 
fragments were ligated in a 1:2:1 molar ratio with T4 ligase (Invitrogen) at 16°C 
overnight. The ligase was inactivated at 70°C for 20 min, and the reactions were diluted 
1000-fold and used as PCR templates with primers P1 and P4. The resulting amplicons 
were gel-purified and cloned into the pGEM T-easy plasmid (Promega #PR-A1360). 
Before cloning, “A-tails” were added by incubating 15 µl of each gel-purified amplicon 
with 0.4 µl Taq polymerase (Invitrogen 5U/µl #18-038-042), 2 µl 10x PCR buffer, 0.6 µl 
50 mM MgCl2 and 2 µl of 10 mM dATP for 30 min at 72°C. The plasmids were 
introduced into electro-competent DH5α E. coli cells, and clones were confirmed by 
restriction digestion and sequencing, then stored as 15% glycerol stocks at -80°C. 
PCR amplification of split-marker fragments, and intact-marker replacement cassettes: 
The plasmids were used as templates for generation of SM fragments and IM 
replacement cassettes (Figure 1). PCR reactions consisted of a 25 µl total reaction 
volume including 2.5 µl of 10X Phusion PCR buffer, 2.5 µl of 25 mM MgCl2, 2 µl of 10 
mM dNTP mix, 1µl of each primer (20 nM) and 1 µl of template DNA (20-50 ng/µl). 
The thermocycling parameters were as follows: initial denaturation for 3 min at 94°C, 
followed by 35 cycles of denaturation at 94°C for 30 sec, annealing at 60°C for 20 sec, 
and extension at 72°C for 1 min/kb, with a final extension for 7 min at 72°C.   
Preparation of fungal protoplasts: Protoplast isolation and transformation protocols were 
modified from methods used for transformation of Aspergillus parasiticus (Skory et al. 
1990; F. Trail, personal communication). Macroconidia were harvested from 7-day-old 
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cultures, washed, and resuspended at a concentration of 1x106 spores/ml. A 100 ml 
aliquot of YEPD was inoculated with 2 ml of the spore solution. The culture was 
incubated for 10–14 hours at 25°C with constant agitation (175 rpm). Mycelia were 
harvested by filtration, washed with sterile water, and treated with 20 ml of protoplasting 
buffer [500 mg Driselase D9515 (MilliporeSigma); 100 mg lysing enzyme from 
Trichoderma harzianum L1412 (MilliporeSigma); in 20 ml of 1.2 M KCl, filter 
sterilized].  Mycelium was incubated in the protoplasting buffer for 45–90 minutes at 
37°C with gentle agitation (50–80 rpm). When most hyphae had released protoplasts, the 
solution was filtered through a 30 µm Nitex nylon membrane into sterile 50 ml centrifuge 
tubes. Protoplasts were pelleted by centrifugation (1729 x g) at room temperature for 5 
min, then gently resuspended in STC buffer (1.2 M sorbitol; 10 mM Tris-HCl, pH 8.0; 50 
mM CaCl2).  Protoplasts were pelleted once more, and then resuspended in STC at a 
concentration of 1 x 108 protoplasts/ml.  

Fungal transformation: For each transformation, 100 µl of the freshly prepared protoplast 
suspension was mixed with 100 µl STC buffer, 50 µl freshly prepared and filter-sterilized 
30% PEG solution (8000 polyethylene glycol, MilliporeSigma, P2139) dissolved in a 
buffer (10 mM Tris-HCl, pH 8.0; 50 mM CaCl2) and 10 µl of DNA (1-3 µg). Protoplasts 
were transformed by IM or SM protocols, or with linearized MAT1 and MAT1-2-1 
plasmids. For SM fragments, 6 µl of both fragments were combined first, and then 10 µl 
of the mixture was added to the transformation.  The reactions were incubated at room 
temperature for 20 min.  Two ml of 30% PEG Solution was added, and incubation 
continued for an additional 5 min. Four ml of STC buffer was added, and gently mixed. 
The transformation reaction was then added to 250 ml of cooled regeneration medium 
(RM) [1.0 g yeast extract; 1.0 g N-Z-Amine AS (N4517 MilliporeSigma); 7.4 g agar; and 
271 g sucrose per liter]. The medium was mixed gently and aliquoted into three 100 mm 
Petri plates. Protoplasts were regenerated for 12–15 hours, and then plates were overlaid 
with 15 ml of RM amended with 150 µg/ml hygromycin B. Transformants usually 
appeared within 4–7 days, when they were transferred to potato dextrose agar (Difco®) 
containing 450 µg/ml hygromycin B. 
Analysis of transformants: Transformants were single-spored, and genomic DNA 
extracted from each strain was evaluated by using Southern hybridization (Southern, 
2006) to characterize integration events. The fertility phenotypes of gene deletion 
mutants were assessed on carrot agar (Leslie and Summerell, 2006). The colonies were 
incubated for 5 days at 23°C with constant fluorescent light.  When the colonies covered 
the plate, 0.5–1.0 ml of 2.5% Tween 60 was applied to the surface of the plate, and the 
mycelia were flattened by rubbing gently with a sterile glass rod to induce perithecial 
production. Presence and appearance of perithecia, as well as presence of asci containing 
ascospores, were assessed 14 days post-induction.  
Results and Discussion 
The mating-type locus of F. graminearum, known as MAT1, is a complex locus that 
contains four individual open reading frames (Yun et al., 2000).  In this study, three DNA 
intervals from the MAT1 locus were targeted for deletion.  These included the entire 
MAT1 locus, the MAT1-1-1 gene, and the MAT1-2-1 gene. SM and IM constructs were 
produced for each interval and used in transformation experiments.  Each experiment 
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generated between 50 and 70 hygromycin-resistant transformants within 4–7 days, from 
which 20-25 individual transformants were arbitrarily chosen for further analysis. There 
were no noticeable differences among the constructs in the number or appearance of the 
transformants they produced on regeneration medium. 
Southern hybridization analysis revealed the presence of three different types of 
integrations among the recovered transformants; these included double-point HR 
resulting from HDR and producing a gene deletion (D-HR), single-point HR producing 
an integration of the transformation construct adjacent to the original gene (S-HR), and 
ectopic integration of the transformation construct by NHEJ (Figure 2).  
Both types of construct (SM and IM) generated gene deletion (D-HR) strains at rates 
ranging from 24–75%.  The SM protocol produced more deletion strains than IM for the 
two longest sequences, MAT1 (6070 bp) and MAT1-1-1 (1091 bp). However, deletion 
efficiencies for the smallest MAT1-2-1 sequence (865 bp) were similar for SM versus IM 
(Table 3). In yeast, increase in GC content of the targeted DNA, comprising the ORF to 
be deleted and the flanking DNA included in the disruption construct, resulted in 
increased representation of HR transformants (Gray and Honigberg, 2001). We noticed a 
similar trend in our study. Overall, MAT1 (48.6% GC) resulted in 32% D-HR, MAT1-1-
1 (51.2% GC) produced 56% D-HR, while MAT1-2-1 (52.7% GC) yielded 67% D-HR.  
Among the strains with D-HR events resulting in gene deletions, approximately one in 
ten had additional ectopic (NHEJ) integrations of the DNA (Table 3, Figure 2). Such 
strains may be less desirable since additional integrations cause off-site mutations that 
could independently affect the phenotypes of the transformants (Weld et al., 2006). The 
SM and IM protocols both generated a similar proportion of strains with additional 
ectopic integrations (13% for SM, 12% for IM).  
SM produced more strains with S-HR events than IM (Table 3). Separate hybridizations 
with each flank of the SM construct pairs (not shown) suggested that SM also produced 
more independent NHEJ integrations overall than IM.  Of the NHEJ integrations 
involving SM, 18% comprised just one of the SM flanks. Of those single flank 
integrations, 74% were of the upstream flank. One possible explanation for the larger 
relative frequency of NHEJ events with SM is the increased number of recombinogenic 
ends in the transforming DNA.  Transformation experiments in which the template 
plasmids were linearized within the plasmid sequence, thus avoiding creation of 
homologous recombinogenic ends, produced fewer integrations, supporting this 
hypothesis (Table 3). Single ectopic insertions can be more easily removed by 
backcrossing than multiple integrations, making them less problematic for research 
purposes. However, we do not know whether transformation with either method also 
produces unmarked off-site mutations. This question will require further study.  
Deletion of any of the three MAT sequences by either SM or IM produced transformants 
that were completely infertile and could reproduce only asexually, as expected. There 
were no apparent differences related to the deletion approach used. MAT1 and MAT1-1-
1 deletion strains produced numerous small perithecial initials containing no ascospores 
after induction (Figure 3). Most MAT1-2-1 deletion strains produced few or no 
perithecial initials and had a thick layer of aerial mycelium that was easily removed from 
the agar (Figure 3). These phenotypes were consistent with other descriptions of similar 
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knockouts in F. graminearum (Lee et al., 2003). Strains without HR events, whether with 
single or multiple ectopic integrations, had wild type homothallic fertility phenotypes. 
The perithecia were of normal size and contained ascospores (not shown).  
The SM and IM methods both efficiently produced gene deletion mutants in F. 
graminearum strain PH-1. SM produced deletions with a higher efficiency for the two 
largest sequences but was similar to IM for the smallest. Fusarium graminearum has a 
relatively high rate of HR compared to other fungi (Maier et al., 2005; Trail, 2009). In 
cases where HR is less efficient, SM could provide more of an advantage. The SM 
protocol facilitates high throughput gene deletion studies, and that convenience provides 
an additional compelling reason to use SM versus IM.  However, we observed that SM 
produces higher numbers of independent ectopic integrations, including integrations that 
involved only one of the two flanks, and this may result in more variability among 
individual transformants due to off-site mutations, as well as complicating their removal 
by backcrossing.  Although PCR is more convenient for screening transformants for 
strains in which the gene of interest has been successfully deleted, Southern 
hybridizations are helpful for the identification of strains with fewer ectopic integrations 
for experimental purposes.  
Acknowledgements 
This research was supported by a cooperative project with the U.S. Wheat and Barley 
Scab Initiative. Any opinions, findings or recommendations expressed in this publication 
are those of the authors and do not necessarily reflect the view of the U.S. Department of 
Agriculture.   
 
References 

Bai, G. H., and Shaner, G., 1996, Variation in Fusarium graminearum and cultivar 
resistance to wheat scab: Plant Disease v. 80, p. 875-979, doi: 10.1094/PD-80-
0975. 

Cahill, D., Connor, B., and Carney, J. P., 2006, Mechanisms of eukaryotic DNA double 
strand break repair: Frontiers in Bioscience: a Journal and Virtual Library v. 11, p. 
1958-1976, doi: 10.2741/1938.  

Catlett, N. L., Lee, B. N., Yoder, O. C., and Turgeon, B. G., 2003, Split-marker 
recombination for efficient targeted deletion of fungal genes: Fungal Genetics 
Reports, v. 50, no.1, p. 9-11, doi: 10.4148/1941-4765.1150. 

Chaveroche, M. K., Ghigo, J. M., and d’Enfert, C., 2000, A rapid method for efficient 
gene replacement in the filamentous fungus Aspergillus nidulans: Nucleic Acids 
Research, v. 28, no. 22, p. e97-e97, doi: 10.1093/nar/28.22.e97 

Cuomo, C. A., Güldener, U., Xu, J. R., Trail, F., Turgeon, B. G., Di Pietro, A., ... and 
Kistler, H. C., 2007, The Fusarium graminearum genome reveals a link between 

6

Fungal Genetics Reports, Vol. 65 [2021], Art. 1

https://newprairiepress.org/fgr/vol65/iss1/1
DOI: 10.4148/1941-4765.2175

https://www.apsnet.org/publications/PlantDisease/BackIssues/Documents/1996Articles/PlantDisease80n09_975.PDF
https://www.apsnet.org/publications/PlantDisease/BackIssues/Documents/1996Articles/PlantDisease80n09_975.PDF
https://doi.org/10.2741/1938
https://doi.org/10.4148/1941-4765.1150
https://doi.org/10.1093/nar/28.22.e97


localized polymorphism and pathogen specialization:  Science, v. 317, no. 5843, 
p. 1400-1402, doi:  10.1126/science.1143708 

Fairhead, C., Llorente, B., Denis, F., Soler, M., and Dujon, B., 1996, New vectors for 
combinatorial deletions in yeast chromosomes and for gap‐repair cloning using 
‘split‐marker’ recombination: Yeast, v. 12, no. 14, p. 1439-1457, doi: 
10.1002/(SICI)1097-0061(199611)12:14%3C1439::AID-YEA37%3E3.0.CO;2-O 

Fu, J., Hettler, E., and Wickes, B. L., 2006, Split marker transformation increases 
homologous integration frequency in Cryptococcus neoformans: Fungal Genetics and 
Biology, v. 43, no. 3, p. 200-212, doi: 10.1016/j.fgb.2005.09.007 

Gray, M., and Honigberg, S. M., 2001, Effect of chromosomal locus, GC content and 
length of homology on PCR-mediated targeted gene replacement in 
Saccharomyces: Nucleic Acids Research, v. 29 no. 24, p. 5156-5162, doi: 
10.1093/nar/29.24.5156 

de Hoogt, R., Luyten, W. H., Contreras, R., and De Backer, M. D., 2000, PCR-and 
ligation-mediated synthesis of split-marker cassettes with long flanking homology 
regions for gene disruption in Candida albicans: Biotechniques, v. 28, no. 6, p. 
1112-1116, doi: 10.2144/00286st01 

Hua, S. B., Qiu, M., Chan, E., Zhu, L., & Luo, Y., 1997, Minimum length of sequence 
homology required for in vivo cloning by homologous recombination in 
yeast: Plasmid, v. 38, no. 2, p. 91-96, doi: 10.1006/plas.1997.1305 

Hynes, M. J., 1996, Genetic transformation of filamentous fungi: Journal of Genetics, v. 
75, no. 3, p. 297-311, doi: 10.1007/BF02966310 

Kanaar, R., Hoeijmakers, J. H., and van Gent, D. C., 1998, Molecular mechanisms of 
DNA double-strand break repair: Trends in Cell Biology, v. 8, no. 12, p. 483-489, 
doi: 10.1016/S0962-8924(98)01383-X 

Krappmann, S., 2007, Gene targeting in filamentous fungi: the benefits of impaired 
repair: Fungal Biology Reviews, v. 21, no. 1, p. 25-29, doi: 
10.1016/j.fbr.2007.02.004 

Lee, J., Lee, T., Lee, Y. W., Yun, S. H., and Turgeon, B. G., 2003, Shifting fungal 
reproductive mode by manipulation of mating type genes: obligatory 
heterothallism of Gibberella zeae: Molecular Microbiology, v. 50, no. 1, p. 145-
152, doi: 10.1046/j.1365-2958.2003.03694.x 

Leslie, J. F., and Summerell, B. A., 2008, The Fusarium laboratory manual: Hoboken 
New Jersey, John Wiley & Sons, 355 p. 

Maier, F. J., Malz, S., Lösch, A. P., Lacour, T., and Schäfer, W., 2005, Development of a 
highly efficient gene targeting system for Fusarium graminearum using the 

7

Bec et al.: Efficiency of split-marker versus double-crossover replacement protocols

Published by New Prairie Press, 2021

https://doi.org/10.1126/science.1143708
https://doi.org/10.1002/(sici)1097-0061(199611)12:14%3c1439::aid-yea37%3e3.0.co;2-o
https://doi.org/10.1016/j.fgb.2005.09.007
https://doi.org/10.1093/nar/29.24.5156
https://doi.org/10.2144/00286st01
https://doi.org/10.1006/plas.1997.1305
https://link.springer.com/article/10.1007/BF02966310
https://doi.org/10.1016/S0962-8924(98)01383-X
https://doi.org/10.1016/j.fbr.2007.02.004
https://doi.org/10.1046/j.1365-2958.2003.03694.x


disruption of a polyketide synthase gene as a visible marker: FEMS Yeast 
Research, v. 5, no. 6-7, p. 653-662, doi: 10.1016/j.femsyr.2004.12.008 

Shafran, H., Miyara, I., Eshed, R., Prusky, D., and Sherman, A., 2008, Development of 
new tools for studying gene function in fungi based on the Gateway 
system: Fungal Genetics and Biology, v. 45, no. 8, p. 1147-1154, doi: 
10.1016/j.fgb.2008.04.011 

Skory, C. D., Horng, J. S., Pestka, J. J., and Linz, J. E., 1990, Transformation of 
Aspergillus parasiticus with a homologous gene (pyrG) involved in pyrimidine 
biosynthesis: Applied and Environmental Microbiology, v. 56, no. 11, p. 3315-
3320, doi: 10.1128/AEM.56.11.3315-3320.1990 

Southern, E., 2006, Southern blotting: Nature Protocols, v. 1, p. 518-525, doi: 
10.1038/nprot.2006.73 

Sweigard, J.A., Chumley, F., Carroll, A., Farrall, L, and Valent, B. 1997. A series of 
vectors for fungal transformation: Fungal Genetics Newsletter v. 44, p. 52-53, 
doi: 10.4148/1941-4765.1287 

Trail, F., 2009, For blighted waves of grain: Fusarium graminearum in the postgenomics 
era: Plant Physiology, v. 149, no. 1, p. 103-110, doi: 10.1104/pp.108.129684 

Turgeon, B. G., Condon, B., Liu, J., and Zhang, N., 2010, Protoplast transformation of 
filamentous fungi, in Sharon A., eds., Molecular and Cell Biology Methods for 
Fungi. Methods in Molecular Biology, Humana Press. v. 638, p. 3-19, doi: 
10.1007/978-1-60761-611-5_1 

Weld, R. J., Plummer, K. M., Carpenter, M. A., and Ridgway, H. J., 2006, Approaches to 
functional genomics in filamentous fungi: Cell Research, v. 16, no. 1, p. 31-44, 
doi: 10.1038/sj.cr.7310006 

Yun, S. H., Arie, T., Kaneko, I., Yoder, O. C., and Turgeon, B. G., 2000, Molecular 
organization of mating type loci in heterothallic, homothallic, and asexual 
Gibberella/Fusarium species: Fungal Genetics and Biology, v. 31, no. 1, p. 7-20, 
doi: 10.1006/fgbi.2000.1226 

8

Fungal Genetics Reports, Vol. 65 [2021], Art. 1

https://newprairiepress.org/fgr/vol65/iss1/1
DOI: 10.4148/1941-4765.2175

https://doi.org/10.1016/j.femsyr.2004.12.008
https://doi.org/10.1016/j.fgb.2008.04.011
https://doi.org/10.1128/aem.56.11.3315-3320.1990
https://doi.org/10.1038/nprot.2006.73
https://doi.org/10.4148/1941-4765.1287
http://www.plantphysiol.org/content/149/1/103
https://doi.org/10.1007/978-1-60761-611-5_1
https://www.nature.com/articles/7310006
https://doi.org/10.1006/fgbi.2000.1226


Table 1. List of primers used in this study. EcoRI sites are highlighted in red and BamHI sites in blue in the primer sequences. 

Gene of 
Interest Primer Amplicon  Primer sequence 5'- 3' 

MAT1 GzMAT1P1 MAT1 5’ flank* forward GCGCTTATATCGGGCATAGA 

 GzMAT1P2EcoRI MAT1 5' flank reverse + EcoRI site AAAGGAATTCGGCGTTCTGAGAGTTGGA 

 GzMAT1P3BamHI MAT1 3' flank forward + BamHI site AAAAGGATCCTGCATTGATTTGAGCCAG 

 GzMATP4 MAT1 3' flank* reverse TCTCACAACGGCAACTGTTC 

MAT1-1-1 GzMAT111F MAT111 internal probe forward AGTCCGAATGAAGCCCCAATACC 

 GzMAT111R MAT111 internal probe reverse CAGAACTTGCAGGTGCTGGGAGT 

 GzMAT111P1 MAT1 5' flank forward GGCCGATAATCTCCTCGACT 

 GzMAT111P2EcoRI MAT1 5' flank reverse + EcoRI site AAGCGAATTCGCACGGAATCGTTCCAGA 

 GzMAT111P3BamHI MAT1 3' flank forward + BamHI site AAGGGGATCCTTAAATTGCAGAGGTGTGTAAGG 

 GzMAT111P4 MAT1 3' flank reverse TCTATGTTAGTAGGCAGCAGTGG 

MAT1-2-1 GzMAT121F MAT121 internal probe forward TCTTCCACCCCCTGTGTCTACCA 

 GzMAT121R MAT121 internal probe reverse TGCGAATGTCAGGATGCTCCA 

 GzMAT121P1 MAT121 5' flank forward GGCATAGAGTCGTCCCAGAA 

 GzMAT121P2BamHI MAT121 5' flank reverse + BamHI site GTAAGGATCCTCAGATGAAGTTGGCAGGTG 

 GzMAT121P3EcoRI MAT121 3' flank forward + EcoRI site TCGAGAATTCCTCAGGCCCTACGTTTTGTT 

 GzMAT121P4 MAT121 3' flank reverse CCTGCAAGTTCTGATGTGGA 

Hyg. marker 
cassette 

HY Internal hygromycin probe forward GGATGCCTCCGCTCGAAGTA 

YG Internal hygromycin probe reverse CGTTGCAAGACCTGCCTGAA 

*5’ flank = upstream flank, 3’ flank = downstream flank 
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Table 2. Summary of PCR protocols used in this study. 

Locus Flank Primer Pair Initial 
denaturation 

PCR amplification Cycles 
Final 
extension 

 
Denaturation Annealing Elongation 

M
A

T
 1

 

up
st

re
am

 
fla

nk
 GzMAT1P1 / 

GzMAT1P2EcoRI 

94 94 60 72 72 temp. (oC) 

3:00 0:30 0:20 1:00 7:00 time (min) 

1 40 1 # of cycles 

do
w

ns
tre

am
 

fla
nk

 GzMAT1P3BamHI / 
GzMAT1P4 

94 94 58 72 72 temp. (oC) 

3:00 0:30 0:20 1:00 7:00 time (min) 

1 40 1 # of cycles 

M
A

T
 1

-1
-1

 

up
st

re
am

 
fla

nk
 GzMAT111P1 / 

GzMAT111P2EcoRI 

94 94 58 72 72 temp. (oC) 

3:00 0:30 0:20 0:35 7:00 time (min) 

1 40 1 # of cycles 

do
w

ns
tre

am
 

fla
nk

 GzMAT111P3BamHI / 
GzMAT111P4 

94 94 60 72 72 temp. (oC) 

3:00 0:30 0:20 0:35 7:00 time (min) 

1 40 1 # of cycles 

M
A

T
 1

-2
-1

 

up
st

re
am

 
fla

nk
 GzMAT121P1 / 

GzMAT121P2BamHI 

94 94 60 72 72 temp. (oC) 

3:00 0:30 0:20 0:50 7:00 time (min) 

1 40 1 # of cycles 

do
w

ns
tre

am
 

fla
nk

 GzMAT121P3EcoRI / 
GzMAT121P4 

94 94 62 72 72 temp. (oC) 

3:00 0:30 0:20 1:00 7:00 time (min) 

1 40 1 # of cycles 
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Table 3. Characteristics of transformants generated by different gene replacement approaches. 

Gene 
Gene 
Replacement 
Strategy 

Number of Transformant Strains/Type of Integration  Total Number of 
Transformants 
Examined by 
Southern Blot D-HR NHEJ S-HR Integration 

Events 

   single D-HR 
+NHEJ 

Percent 
HR single multiple  Total Avg  

MAT1 SMC* 10 2 48% 0 8 5 101 4 25 

MAT1 IMC** 5 1 24% 12 5 2 53 2 25 

MAT1 IMC(lp)*** 6 0 24% 13 4 2 29 1 25 

MAT1-1-1 SMC 11 6 68% 0 5 3 95 4 25 

MAT1-1-1 IMC 7 4 44% 3 9 2 76 3 25 

MAT1-2-1 SMC 12 1 65% 1 0 6 54 3 20 

MAT1-2-1 IMC 15 3 75% 2 4 0 42 2 24 

MAT1-2-1 IMC(lp) 8 4 60% 3 1 4 38 2 20 

 *SMC = Split Marker Cassette Method 
 **IMC = Intact Marker Cassette Method 
 ***IMC(lp) = Template plasmid linearized within plasmid sequence. 
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Figure 1. Split-marker and intact-marker gene-replacement strategies. a1) PCR amplification of flanking regions with overhangs 
containing RE recognition sequences; a2) release of  hygromycin resistance gene from pBSHyg2 by digestion with EcoRI and BamHI; 
b) Ligation of PCR-amplified flanking regions with the hygromycin gene released from pBSHyg2; c1) PCR amplification of split-
marker fragments with combination of flanking region (5’flankP1 or 3’flankP4) primer and hygromycin-gene specific primer (HY or 
YG); c2)  PCR amplification of an intact marker cassette with gene specific 5’flankP1 and 3’flankP4 primers. 
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Figure 2. Diagrams illustrating the Southern blot strategies used to characterize F. 
graminearum MAT gene deletion transformants. Only SM results are shown here as 
examples. Genomic DNA from MAT1 and MAT1-2-1 transformant strains (1, 3) was 
digested with XhoI, while MAT1-1-1 transformant DNA (2) was digested with NheI. 
Blots were hybridized with MAT-1-2-1 or MAT1-1-1 gene-specific probes (black bars 
in panels 1-3a) and with an hph gene-specific probe (gray bar in panels 1-3a).  In the 
blot overlays (panels 1-3b), fragments hybridizing to the hph probe are shown in red or 
gray, and to MAT1-1-1 or MAT1-2-1 in green. The first lane in each blot contained 
linearized hph plasmid DNA while lane 2 in each case contained genomic DNA from 
untransformed PH-1. 1a. MAT1 whole locus deletion map. 1b. Homologous 
recombination gene deletion (D-HR) without additional ectopic integrations (lanes 4, 6, 
7, 8, 13, 16, 18, 22, 24, 26); D-HR with additional ectopic integrations (lanes 3 and 5); 
ectopic integration (NHEJ) without HR (lanes 10, 12, 14, 15, 17, 19, 25, 27); and single 
point HR recombination (S-HR) (lanes 9, 11, 20, 21, and 23). In lanes 20, 21, and 23, 
the MAT probe and the hph probe both hybridized to the same fragment: the green 
band is obscuring the underlying red band in these cases. 2a. MAT1-1-1 gene deletion 
map. 2b. D-HR without additional ectopic integrations (lanes 12, 17, 19, 22, 23, 26, 
27); D-HR with additional ectopic integrations (lanes 5, 15, 18, and 24); NHEJ without 
HR (lanes 4, 6, 7, 8, 9, 10, 11, 13, 14, 20, 21, 25); and S-HR (lanes 3 and 16). 3a. MAT 
1-2-1 gene deletion map. 3b. D-HR without additional ectopic integrations (lanes 3, 5, 
6, 7, 11, 13, 15, 16, 17, 18, 19, and 21); D-HR with additional ectopic integrations (lane 
20); and S-HR (lanes 4, 8, 9, 10, 12, and 14).  There are no examples of transformants 
with NHEJ without HR shown here.  
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Figure 3. Fertility phenotypes of MAT deletion mutants on carrot agar. Scale bars = 200 
microns. 1A: Wild type strain PH-1 perithecia with cirrhi, 100X magnification. 1B: A 
single perithecium of PH-1, squashed to reveal mature asci and ascospores (black 
arrows), 400X magnification. 2A: Perithecia of MAT1 deletion mutants were less than 
half the size of WT perithecia and never produced cirrhi. 100X magnification. 2B: 
Perithecia of the MAT1 deletion mutants did not release asci or ascospores when 
squashed.  The spores visible in this photo are asexual conidia.  3A: Perithecia of the 
MAT1-1-1 deletion mutants were similar in size, number, and appearance to those of the 
MAT1 deletion mutants. 100X magnification.  3B: Perithecia of MAT1-1-1 deletion 
mutants did not contain asci or ascospores. 4A: MAT1-2-1 deletion mutants in general 
produced fewer perithecia than MAT1 or MAT1-1-1 deletions strains, although they were 
similar in appearance at less than half the size of the WT perithecia. 100X magnification. 
4B: MAT1-2-1 perithecia also did not contain asci or ascospores. 400X magnification.  
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