17 research outputs found

    Deep incision in an Aptian carbonate succession indicates major sea-level fall in the Cretaceous

    Get PDF
    Long-term relative sea-level cycles (0 5 to 6 Myr) have yet to be fully understood for the Cretaceous. During the Aptian, in the northern Maestrat Basin (Eastern Iberian Peninsula), fault-controlled subsidence created depositional space, but eustasy governed changes in depositional trends. Relative sea-level history was reconstructed by sequence stratigraphic analysis. Two forced regressive stages of relative sea-level were recognized within three depositional sequences. The first stage is late Early Aptian age (intra Dufrenoyia furcata Zone) and is characterized by foreshore to upper shoreface sedimentary wedges, which occur detached from a highstand carbonate platform, and were deposited above basin marls. The amplitude of relative sea-level drop was in the order of tens of metres, with a duration of 2 km wide and cut 115 m down into the underlying Aptian succession. With the subsequent transgression, the incision was back-filled with peritidal to shallow subtidal deposits. The changes in depositional trends, lithofacies evolution and geometric relation of the stratigraphic units characterized are similar to those observed in coeval rocks within the Maestrat Basin, as well as in other correlative basins elsewhere. The pace and magnitude of the two relative sea-level drops identified fall within the glacio-eustatic domain. In the Maestrat Basin, terrestrial palynological studies provide evidence that the late Early and Late Aptian climate was cooler than the earliest part of the Early Aptian and the Albian Stage, which were characterized by warmer environmental conditions. The outcrops documented here are significant because they preserve the results of Aptian long-term sea-level trends that are often only recognizable on larger scales (i.e. seismic) such as for the Arabian Plate

    Amplitude, frequency and drivers of Caspian Sea lake-level variations during the Early Pleistocene and their impact on a protected wave-dominated coastline

    No full text
    The Caspian Sea, the largest isolated lake in the world, witnessed drastic lake-level variations during the Quaternary. This restricted basin appears very sensitive to lake-level variations, due to important variations in regional evaporation, precipitation and runoff. The amplitude, frequency and drivers of these lake-level changes are still poorly documented and understood. Studying geological records of the Caspian Sea might be the key to better comprehend the complexity of these oscillations. The Hajigabul section documents sediment deposited on the northern margin of the Kura Basin, a former embayment of the Caspian Sea. The 2035 m thick, well-exposed section was previously dated by magneto-biostratigraphic techniques and provides an excellent record of Early Pleistocene environmental, lake-level and climate changes. Within this succession, the 1050 m thick Apsheronian regional stage, between ca 2·1 Ma and 0·85 Ma, represents a particular time interval with 20 regressive sequences documented by sedimentary and palaeontological changes. Sequences are regressing from offshore to coastal, lagoonal or terrestrial settings and are bounded by abrupt flooding events. Sediment reveals a low energy, wave-dominated, reflective beach system. Wave baselines delimiting each facies association appear to be located at shallower bathymetries compared to the open ocean. Water depth estimations of the wave baselines allow reconstruction of a lake-level curve, recording oscillations of ca 40 m amplitude. Cyclostratigraphic analyses display lake-level frequency close to 41 kyr, pointing to allogenic forcing, dominated by obliquity cycles and suggesting a direct or indirect link with high-latitude climates and environments. This study provides a detailed lake-level curve for the Early Pleistocene Caspian Sea and constitutes a first step towards a better comprehension of the magnitude, occurrence and forcing mechanisms of Caspian Sea lake-level changes. Facies models developed in this study regarding sedimentary architectures of palaeocoastlines affected by repeated lake-level fluctuations may form good analogues for other (semi-)isolated basins worldwide

    Grape

    No full text
    corecore