54 research outputs found

    Coherent control of broadband vacuum squeezing

    Get PDF
    We present the observation of optical fields carrying squeezed vacuum states at sideband frequencies from 10Hz to above 35MHz. The field was generated with type-I optical parametric oscillation below threshold at 1064nm. A coherent, unbalanced classical modulation field at 40MHz enabled the generation of error signals for stable phase control of the squeezed vacuum field with respect to a strong local oscillator. Broadband squeezing of approximately -4dB was measured with balanced homodyne detection. The spectrum of the squeezed field allows a quantum noise reduction of ground-based gravitational wave detectors over their full detection band, regardless of whether homodyne readout or radio-frequency heterodyne readout is used.Comment: 9 pages, 8 figure

    The squeezed light source for the advanced virgo detector in the observation run O3

    Get PDF
    From 1 April 2019 to 27 March 2020, the Advanced Virgo detector, together with the two Advanced LIGO detectors, conducted the third joint scientific observation run O3, aiming for further detections of gravitational wave signals from astrophysical sources. One of the upgrades to the Virgo detector for O3 was the implementation of the squeezed light technology to improve the detector sensitivity beyond its classical quantum shot noise limit. In this paper, we present a detailed description of the optical setup and performance of the employed squeezed light source. The squeezer was constructed as an independent, stand-alone sub-system operated in air. The generated squeezed states are tailored to exhibit high purity at intermediate squeezing levels in order to significantly reduce the interferometer shot noise level while keeping the correlated enhancement of quantum radiation pressure noise just below the actual remaining technical noise in the Advanced Virgo detector

    Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB

    Full text link
    Continuous-wave squeezed states of light at the wavelength of 1550 nm have recently been demonstrated, but so far the obtained factors of noise suppression still lag behind today's best squeezing values demonstrated at 1064 nm. Here we report on the realization of a half-monolithic nonlinear resonator based on periodically-poled potassium titanyl phosphate which enabled the direct detection of up to 12.3 dB of squeezing at 5 MHz. Squeezing was observed down to a frequency of 2 kHz which is well within the detection band of gravitational wave interferometers. Our results suggest that a long-term stable 1550 nm squeezed light source can be realized with strong squeezing covering the entire detection band of a 3rd generation gravitational-wave detector such as the Einstein Telescope

    Numerical analysis of LG3,3 second harmonic generation in comparison to the LG0,0 case

    Get PDF
    For coating Brownian thermal noise reduction in future gravitational wave detectors, it is proposed to use light in the helical Laguerre-Gaussian LG3,3 mode instead of the currently used LG0,0 mode. However, the simultaneous reduction of quantum noise would then require the efficient generation of squeezed vacuum states in the LG3,3 mode. Current squeezed light generation techniques employ continuous-wave second harmonic generation (SHG). Here, we simulate the SHG for both modes numerically to derive first insights into the transferability of standard squeezed light generation techniques to the LG3,3 mode. In the first part of this paper, we therefore theoretically discuss SHG in the case of a single undepleted pump mode, which, in general, excites a superposition of harmonic modes. Based on the differential equation for the harmonic field, we derive individual phase matching conditions and hence conversion efficiencies for the excited harmonic modes. In the second part, we analyse the numerical simulations of the LG0,0 and LG3,3 SHG in a single-pass, double-pass and cavity-enhanced configuration under the influence of the focusing, the different pump intensity distributions and the individual phase matching conditions. Our results predict that the LG3,3 mode requires about 14 times the pump power of the LG0,0 mode to achieve the same SHG conversion efficiency in an ideal, realistic cavity design and mainly generates the harmonic LG6,6 mode. © 2020 Optical Society of America

    Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling

    Full text link
    Twin-Signal-Recycling (TSR) builds on the resonance doublet of two optically coupled cavities and efficiently enhances the sensitivity of an interferometer at a dedicated signal frequency. We report on the first experimental realization of a Twin-Signal-Recycling Michelson interferometer and also its broadband enhancement by squeezed light injection. The complete setup was stably locked and a broadband quantum noise reduction of the interferometers shot noise by a factor of up to 4\,dB was demonstrated. The system was characterized by measuring its quantum noise spectra for several tunings of the TSR cavities. We found good agreement between the experimental results and numerical simulations

    Observation of squeezed states with strong photon number oscillations

    Get PDF
    Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, e.g. gravitational wave detection, as well as in the field of quantum information, e.g. for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of the strongest squeezing to date of 11.5 dB, together with unprecedented high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons, and the existence of strong photon number oscillations.Comment: 7 pages, 6 figure

    Phase Control of Squeezed Vacuum States of Light in Gravitational Wave Detectors

    Full text link
    Quantum noise will be the dominant noise source for the advanced laser interferometric gravitational wave detectors currently under construction. Squeezing-enhanced laser interferometers have been recently demonstrated as a viable technique to reduce quantum noise. We propose two new methods of generating an error signal for matching the longitudinal phase of squeezed vacuum states of light to the phase of the laser interferometer output field. Both provide a superior signal to the one used in previous demonstrations of squeezing applied to a gravitational-wave detector. We demonstrate that the new signals are less sensitive to misalignments and higher order modes, and result in an improved stability of the squeezing level. The new signals also offer the potential of reducing the overall rms phase noise and optical losses, each of which would contribute to achieving a higher level of squeezing. The new error signals are a pivotal development towards realizing the goal of 6 dB and more of squeezing in advanced detectors and beyond

    The GEO600 squeezed light source

    Full text link
    The next upgrade of the GEO600 gravitational wave detector is scheduled for 2010 and will, in particular, involve the implementation of squeezed light. The required non-classical light source is assembled on a 1.5m^2 breadboard and includes a full coherent control system and a diagnostic balanced homodyne detector. Here, we present the first experimental characterization of this setup as well as a detailed description of its optical layout. A squeezed quantum noise of up to 9dB below the shot-noise level was observed in the detection band between 10Hz and 10kHz. We also present an analysis of the optical loss in our experiment and provide an estimation of the possible non-classical sensitivity improvement of the future squeezed light enhanced GEO600 detector.Comment: 8 pages, 4 figure

    Observation of squeezed light with 10dB quantum noise reduction

    Full text link
    Squeezing of light's quantum noise requires temporal rearranging of photons. This again corresponds to creation of quantum correlations between individual photons. Squeezed light is a non-classical manifestation of light with great potential in high-precision quantum measurements, for example in the detection of gravitational waves. Equally promising applications have been proposed in quantum communication. However, after 20 years of intensive research doubts arose whether strong squeezing can ever be realized as required for eminent applications. Here we show experimentally that strong squeezing of light's quantum noise is possible. We reached a benchmark squeezing factor of 10 in power (10dB). Thorough analysis reveals that even higher squeezing factors will be feasible in our setup.Comment: 10 pages, 4 figure

    Continuous-wave squeezed states of light via ‘up-down’ self-phase modulation

    Get PDF
    Continuous-wave (cw) squeezed states of light have applications in sensing, metrology and secure communication. In recent decades their efficient generation has been based on parametric down-conversion, which requires pumping by externally generated pump light of twice the optical frequency. Currently, there is immense effort in miniaturizing squeezed-light sources for chip-integration. Designs that require just a single input wavelength are favored since they offer an easier realization. Here we report the first observation of cw squeezed states generated by self-phase modulation caused by subsequent up and down conversions. The wavelengths of input light and of balanced homodyne detection are identical, and 1550 nm in our case. At sideband frequencies around 1.075 GHz, a nonclassical noise reduction of (2.4 ± 0.1) dB is observed. The setup uses a second-order nonlinear crystal, but no externally generated light of twice the frequency. Our experiment is not miniaturized, but might open a route towards simplified chip-integrated realizations. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen
    • 

    corecore