828 research outputs found

    Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB

    Full text link
    Continuous-wave squeezed states of light at the wavelength of 1550 nm have recently been demonstrated, but so far the obtained factors of noise suppression still lag behind today's best squeezing values demonstrated at 1064 nm. Here we report on the realization of a half-monolithic nonlinear resonator based on periodically-poled potassium titanyl phosphate which enabled the direct detection of up to 12.3 dB of squeezing at 5 MHz. Squeezing was observed down to a frequency of 2 kHz which is well within the detection band of gravitational wave interferometers. Our results suggest that a long-term stable 1550 nm squeezed light source can be realized with strong squeezing covering the entire detection band of a 3rd generation gravitational-wave detector such as the Einstein Telescope

    Generation of squeezed light with monolithic optical parametric oscillator: Simultaneous achievement of phase matching and cavity resonance by temperature control

    Full text link
    We generate squeezed state of light at 860 nm with a monolithic optical parametric oscillator. The optical parametric oscillator consists of a periodically poled KTiOPO_4 crystal, both ends of which are spherically polished and mirror-coated. We achieve both phase matching and cavity resonance by controlling only the temperature of the crystal. We observe up to -8.0 dB of squeezing with the bandwidth of 142 MHz. Our technique makes it possible to drive many monolithic cavities simultaneously by a single laser. Hence our monolithic optical parametric oscillator is quite suitable to continuous-variable quantum information experiments where we need a large number of highly squeezed light beams.Comment: 8 pages, 4 figure

    Coherent control of broadband vacuum squeezing

    Get PDF
    We present the observation of optical fields carrying squeezed vacuum states at sideband frequencies from 10Hz to above 35MHz. The field was generated with type-I optical parametric oscillation below threshold at 1064nm. A coherent, unbalanced classical modulation field at 40MHz enabled the generation of error signals for stable phase control of the squeezed vacuum field with respect to a strong local oscillator. Broadband squeezing of approximately -4dB was measured with balanced homodyne detection. The spectrum of the squeezed field allows a quantum noise reduction of ground-based gravitational wave detectors over their full detection band, regardless of whether homodyne readout or radio-frequency heterodyne readout is used.Comment: 9 pages, 8 figure

    Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling

    Full text link
    Twin-Signal-Recycling (TSR) builds on the resonance doublet of two optically coupled cavities and efficiently enhances the sensitivity of an interferometer at a dedicated signal frequency. We report on the first experimental realization of a Twin-Signal-Recycling Michelson interferometer and also its broadband enhancement by squeezed light injection. The complete setup was stably locked and a broadband quantum noise reduction of the interferometers shot noise by a factor of up to 4\,dB was demonstrated. The system was characterized by measuring its quantum noise spectra for several tunings of the TSR cavities. We found good agreement between the experimental results and numerical simulations

    The GEO600 squeezed light source

    Full text link
    The next upgrade of the GEO600 gravitational wave detector is scheduled for 2010 and will, in particular, involve the implementation of squeezed light. The required non-classical light source is assembled on a 1.5m^2 breadboard and includes a full coherent control system and a diagnostic balanced homodyne detector. Here, we present the first experimental characterization of this setup as well as a detailed description of its optical layout. A squeezed quantum noise of up to 9dB below the shot-noise level was observed in the detection band between 10Hz and 10kHz. We also present an analysis of the optical loss in our experiment and provide an estimation of the possible non-classical sensitivity improvement of the future squeezed light enhanced GEO600 detector.Comment: 8 pages, 4 figure

    High-efficiency squeezed light generation for gravitational wave detectors

    Get PDF
    The engineering of strongly squeezed vacuum states of light is a key technology for the reduction of quantum noise in gravitational wave detectors. We report on the observation of up to 12.0 dB squeezed vacuum states of light at the wavelength of 1064 nm in the frequency band from 10 Hz to 100 kHz. This is the strongest squeezing reported to date within this detection band. The squeezed states were generated in a half-monolithic, standing-wave cavity optical parametric amplifier, which was resonant for the fundamental and harmonic light fields. We chose appropriate reflectivities to obtain a significant reduction of the required pump power, which was 8.6 mW only. Our analysis revealed that the residual measurement phase noise was smaller than 3.5 mrad rms and that the squeezed light source provided up to 14 dB of squeezing for a downstream application. The experiment was electronically stabilized in all relevant degrees of freedom, demonstrating the applicability of the linear, doubly resonant cavity topology for current and future gravitational wave detectors

    Observation of squeezed states with strong photon number oscillations

    Get PDF
    Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, e.g. gravitational wave detection, as well as in the field of quantum information, e.g. for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of the strongest squeezing to date of 11.5 dB, together with unprecedented high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons, and the existence of strong photon number oscillations.Comment: 7 pages, 6 figure

    First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory

    Full text link
    We report on the first long-term application of squeezed vacuum states of light to improve the shot-noise-limited sensitivity of a gravitational-wave observatory. In particular, squeezed vacuum was applied to the German/British detector GEO600 during a period of three months from June to August 2011, when GEO600 was performing an observational run together with the French/Italian Virgo detector. In a second period squeezing application continued for about 11 months from November 2011 to October 2012. During this time, squeezed vacuum was applied for 90.2% (205.2 days total) of the time that science-quality data was acquired with GEO600. Sensitivity increase from squeezed vacuum application was observed broad-band above 400Hz. The time average of gain in sensitivity was 26% (2.0dB), determined in the frequency band from 3.7kHz to 4.0kHz. This corresponds to a factor of two increase in observed volume of the universe, for sources in the kHz region (e.g. supernovae, magnetars). We introduce three new techniques to enable stable long-term application of squeezed light, and show that the glitch-rate of the detector did not increase from squeezing application. Squeezed vacuum states of light have arrived as a permanent application, capable of increasing the astrophysical reach of gravitational-wave detectors.Comment: 4 pages, 4 figure

    Non-Markovian reservoir-dependent squeezing

    Full text link
    The squeezing dynamics of a damped harmonic oscillator are studied for different types of environment without making the Markovian approximation. The squeezing dynamics of a coherent state depend on the reservoir spectrum in a unique way that can, in the weak coupling approximation, be analyzed analytically. Comparison of squeezing dynamics for Ohmic, sub-Ohmic and super-Ohmic environments is done showing a clear connection between the squeezing--non-squeezing oscillations and reservoir structure. Understanding the effects occurring due to structured reservoirs is important both from a purely theoretical point of view and in connection with evolving experimental techniques and future quantum computing applications.Comment: 8 pages, 2 figures, submitted to Proceedings of CEWQO200
    • …
    corecore