5 research outputs found

    Structure-based discovery and in vitro validation of inhibitors of chloride intracellular channel 4 protein

    Get PDF
    The use of computer-aided methods have continued to propel accelerated drug discovery across various disease models, interestingly allowing the specific inhibition of pathogenic targets. Chloride Intracellular Channel Protein 4 (CLIC4) is a novel class of intracellular ion channel highly implicated in tumor and vascular biology. It regulates cell proliferation, apoptosis and angiogenesis; and is involved in multiple pathologic signaling pathways. Absence of specific inhibitors however impedes its advancement to translational research. Here, we integrate structural bioinformatics and experimental research approaches for the discovery and validation of small-molecule inhibitors of CLIC4. High-affinity allosteric binders were identified from a library of 1615 Food and Drug Administration (FDA)-approved drugs via a high-performance computing-powered blind-docking approach, resulting in the selection of amphotericin B and rapamycin. NMR assays confirmed the binding and conformational disruptive effects of both drugs while they also reversed stress-induced membrane translocation of CLIC4 and inhibited endothelial cell migration. Structural and dynamics simulation studies further revealed that the inhibitory mechanisms of these compounds were hinged on the allosteric modulation of the catalytic glutathione (GSH)-like site loop and the extended catalytic β loop which may elicit interference with the catalytic activities of CLIC4. Structure-based insights from this study provide the basis for the selective targeting of CLIC4 to treat the associated pathologies

    Tipifarnib prevents development of hypoxia-induced pulmonary hypertension

    Get PDF
    Aims. RhoB plays a key role in the pathogenesis of hypoxia - induced pulmonary hypertension. Farne sylated RhoB promotes growth responses in cancer cells and we investigated whether inhibition of protein farnesylation will have a protective effect. Methods and Results. The analysis of l ung tissues from rodent models and pulmonary hypertensive patients showed increased levels of protein farnesylation. Oral farnesyltransferase inhibitor tipifarnib prevented development of hypoxia - induced pulmonary hypertension in mice. Tipifarnib reduced hypoxia - induced vascular cell proliferation, increased endothelium - dependent vasodilatation and reduced vasoconstriction of intrapulmonary arteries without affecting cell viability. Protective effects of tipifarnib were associated with inhibition of Ras and RhoB, actin depolymerisation and increased eNOS expression in vi tro and in vivo . Farnesylated - only RhoB (F - RhoB) increased proliferative responses in cultured pulmonary vascular cells, mimicking the effects of hypoxia, while both geranylgeranylated - only RhoB (GG - RhoB) and tipifarnib had an inhibitory effect. Label - fre e proteomics linked F - RhoB with cell survival, activation of cell cycle and mitochondrial biogenesis. Hypoxia increased and tipifarnib reduced the levels of F - RhoB - regulated proteins in the lung, reinforcing the importance of RhoB as a signalling mediator. Unlike simvastatin, tipifarnib did not increase the expression levels of Rho proteins. Conclusions. Our study demonstrates the importance of protein farnesylation in pulmonary vascular remodeling and provides a rationale for selective targeting of this pa thway in pulmonary hypertension

    Intracellular Chloride Channels Regulate Endothelial Metabolic Reprogramming in Pulmonary Arterial Hypertension

    No full text
    Mitochondrial fission and a metabolic switch from oxidative phosphorylation to glycolysis are key features of vascular pathology in pulmonary arterial hypertension (PAH) and are associated with exuberant endothelial proliferation and apoptosis. The underlying mechanisms are poorly understood. We describe the contribution of two intracellular chloride channel proteins, CLIC1 and CLIC4, both highly expressed in PAH and cancer, to mitochondrial dysfunction and energy metabolism in PAH endothelium. Pathological overexpression of CLIC proteins induces mitochondrial fragmentation, inhibits mitochondrial cristae formation, and induces metabolic shift toward glycolysis in human pulmonary artery endothelial cells, consistent with changes observed in patient-derived cells. Interactions of CLIC proteins with structural components of the inner mitochondrial membrane offer mechanistic insights. Endothelial CLIC4 excision and mitofusin 2 supplementation have protective effects in human PAH cells and preclinical PAH. This study is the first to demonstrate the key role of endothelial intracellular chloride channels in the regulation of mitochondrial structure, biogenesis, and metabolic reprogramming in expression of the PAH phenotype

    Structure-based discovery and in vitro validation of inhibitors of chloride intracellular channel 4 protein

    Get PDF
    The use of computer-aided methods have continued to propel accelerated drug discovery across various disease models, interestingly allowing the specific inhibition of pathogenic targets. Chloride Intracellular Channel Protein 4 (CLIC4) is a novel class of intracellular ion channel highly implicated in tumor and vascular biology. It regulates cell proliferation, apoptosis and angiogenesis; and is involved in multiple pathologic signaling pathways. Absence of specific inhibitors however impedes its advancement to translational research. Here, we integrate structural bioinformatics and experimental research approaches for the discovery and validation of small-molecule inhibitors of CLIC4. High-affinity allosteric binders were identified from a library of 1615 Food and Drug Administration (FDA)-approved drugs via a high-performance computing-powered blind-docking approach, resulting in the selection of amphotericin B and rapamycin. NMR assays confirmed the binding and conformational disruptive effects of both drugs while they also reversed stress-induced membrane translocation of CLIC4 and inhibited endothelial cell migration. Structural and dynamics simulation studies further revealed that the inhibitory mechanisms of these compounds were hinged on the allosteric modulation of the catalytic glutathione (GSH)-like site loop and the extended catalytic β loop which may elicit interference with the catalytic activities of CLIC4. Structure-based insights from this study provide the basis for the selective targeting of CLIC4 to treat the associated pathologies
    corecore