1,353 research outputs found

    Massive Spin Collective Mode in Quantum Hall Ferromagnet

    Full text link
    It is shown that the collective spin rotation of a single Skyrmion in quantum Hall ferromagnet can be regarded as precession of the entire spin texture in the external magnetic field, with an effective moment of inertia which becomes infinite in the zero g-factor limit. This low-lying spin excitation may dramatically enhance the nuclear spin relaxation rate via the hyperfine interaction in the quantum well slightly away from filling factor equal one.Comment: 4 page

    Nucleus-mediated spin-flip transitions in GaAs quantum dots

    Full text link
    Spin-flip rates in GaAs quantum dots can be quite slow, thus opening up the possibilities to manipulate spin states in the dots. We present here estimations of inelastic spin-flip rates mediated by hyperfine interaction with nuclei. Under general assumptions the nucleus mediated rate is proportional to the phonon relaxation rate for the corresponding non-spin-flip transitions. The rate can be accelerated in the vicinity of a singlet-triplet excited states crossing. The small proportionality coefficient depends inversely on the number of nuclei in the quantum dot. We compare our results with known mechanisms of spin-flip in GaAsGaAs quantum dot.Comment: RevTex 4 pages, 1 figure, submitted to Phys. Rev.

    Is the magnetic field necessary for the Aharonov-Bohm effect in mesoscopics?

    Full text link
    A new class of topological mesoscopic phenomena in absence of external magnetic field (meso-nucleo-spinics)is predicted, which is based on combined action of the nonequilibrium nuclear spin population and charge carriers spin-orbit interaction . As an example, we show that Aharonov-Bohm like oscillations of the persistent current in GaAs/AlGaAs based mesoscopic rings may exist, in the absence of the external magnetic field, provided that a topologically nontrivial strongly nonequilibrium nuclear spin population is created. This phenomenon is due to the breaking, via the spin-orbit coupling, of the clock wise - anti clock wise symmetry of the charge carriers momentum, which results in the oscillatory in time persistent current.Comment: 14 pages, Late

    Combined effect of Zeeman splitting and spin-orbit interaction on the Josephson current in a S-2DEG-S structure

    Full text link
    We analyze new spin effects in current-carrying state of superconductor-2D electron gas-superconductor (S-2DEG-S) device with spin-polarized nuclei in 2DEG region. The hyperfine interaction of 2D electrons with nuclear spins, described by the effective magnetic field B, produces Zeeman splitting of Andreev levels without orbital effects, that leads to the interference pattern of supercurrent oscillations over B. The spin-orbit effects in 2DEG cause strongly anisotropic dependence of the Josephson current on the direction of B, which may be used as a probe for the spin-orbit interaction intensity. Under certain conditions, the system reveals the properties of pi-junction.Comment: 4 pages, 4 figure

    Algumas espécies coprófilas de Psilocybe (Strophariaceae) do Estado de Pernambuco, Brasil

    Get PDF
    Coprophilous species Psilocybe argentina, P. pegleriana and P. cubensis are reported for the first time for Northeast Brazil. The last one is a hallucinogenic mushroom. Descriptions, discussions and drawings of the species are provided.As espécies coprófilas Psilocybe argentina, P. pegleriana e P. cubensis são referidas pela primeira vez para o Nordeste Brasileiro, sendo esta última uma espécie de cogumelo alucinógeno. Descrições, discussões e desenhos das espécies são fornecidos

    Electronic Transport Through a Nuclear-Spin-Polarization-Induced Quantum Wire

    Get PDF
    Electron transport in a low-dimensional structure—the nuclear-spin-polarization-induced quantum wire is theoretically studied. In the proposed system the local nuclear-spin polarization creates the effective hyperfine field that confines the electrons with the spins opposite to the hyperfine field to the regions of maximal nuclear-spin polarization. The influence of the nuclear-spin relaxation and diffusion on the electron energy spectrum and on the conductance of the quantum wire is calculated and the experimental feasibility is discussed

    Swimming into peptidomimetic chemical space using pepMMsMIMIC

    Get PDF
    pepMMsMIMIC is a novel web-oriented peptidomimetic compound virtual screening tool based on a multi-conformers three-dimensional (3D)-similarity search strategy. Key to the development of pepMMsMIMIC has been the creation of a library of 17 million conformers calculated from 3.9 million commercially available chemicals collected in the MMsINC® database. Using as input the 3D structure of a peptide bound to a protein, pepMMsMIMIC suggests which chemical structures are able to mimic the protein–protein recognition of this natural peptide using both pharmacophore and shape similarity techniques. We hope that the accessibility of pepMMsMIMIC (freely available at http://mms.dsfarm.unipd.it/pepMMsMIMIC) will encourage medicinal chemists to de-peptidize protein–protein recognition processes of biological interest, thus increasing the potential of in silico peptidomimetic compound screening of known small molecules to expedite drug development
    • …
    corecore