29 research outputs found

    Metabolic recovery and compensatory shell growth of juvenile Pacific geoduck \u3cem\u3ePanopea generosa\u3c/em\u3e following short-term exposure to acidified seawater

    Get PDF
    While acute stressors can be detrimental, environmental stress conditioning can improve performance. To test the hypothesis that physiological status is altered by stress conditioning, we subjected juvenile Pacific geoduck, Panopea generosa, to repeated exposures of elevated pCO2 in a commercial hatchery setting followed by a period in ambient common garden. Respiration rate and shell length were measured for juvenile geoduck periodically throughout short-term repeated reciprocal exposure periods in ambient (~550 μatm) or elevated (~2400 μatm) pCO2 treatments and in common, ambient conditions, 5 months after exposure. Short-term exposure periods comprised an initial 10-day exposure followed by 14 days in ambient before a secondary 6-day reciprocal exposure. The initial exposure to elevated pCO2 significantly reduced respiration rate by 25% relative to ambient conditions, but no effect on shell growth was detected. Following 14 days in common garden, ambient conditions, reciprocal exposure to elevated or ambient pCO2 did not alter juvenile respiration rates, indicating ability for metabolic recovery under subsequent conditions. Shell growth was negatively affected during the reciprocal treatment in both exposure histories; however, clams exposed to the initial elevated pCO2 showed compensatory growth with 5.8% greater shell length (on average between the two secondary exposures) after 5 months in ambient conditions. Additionally, clams exposed to the secondary elevated pCO2 showed 52.4% increase in respiration rate after 5 months in ambient conditions. Early exposure to low pH appears to trigger carryover effects suggesting bioenergetic re-allocation facilitates growth compensation. Life stage-specific exposures to stress can determine when it may be especially detrimental, or advantageous, to apply stress conditioning for commercial production of this long-lived burrowing clam

    Differential response to stress in Ostrea lurida as measured by gene expression

    No full text
    Olympia oysters are the only oyster native to the west coast of North America. The population within Puget Sound, WA has been decreasing significantly since the early 1900’s. Current restoration efforts are focused on supplementing local populations with hatchery bred oysters. A recent study by Heare et al. (2017) has shown differences in stress response in oysters from different locations in Puget Sound however, nothing is known about the underlying mechanisms associated with these observed differences. In this study, expression of genes associated with growth, immune function, and gene regulatory activity in oysters from Oyster Bay, Dabob Bay, and Fidalgo Bay were characterized following temperature and mechanical stress. We found that heat stress and mechanical stress significantly changed expression in molecular regulatory activity and immune response, respectively. We also found that oysters from Oyster Bay had the most dramatic response to stress at the gene expression level. These data provide important baseline information on the physiological response of Ostrea lurida to stress and provide clues to underlying performance differences in the three populations examined

    Seawater carbonate chemistry of experiment on acclimatory gene expression of primed clams enhances robustness to elevated pCO2

    No full text
    Sublethal exposure to environmental challenges may enhance ability to cope with chronic or repeated change, a process known as priming. In a previous study, pre-exposure to seawater enriched with pCO2 improved growth and reduced antioxidant capacity of juvenile Pacific geoduck Panopea generosa clams, suggesting that transcriptional shifts may drive phenotypic modifications post-priming. To this end, juvenile clams were sampled and TagSeq gene expression data were analysed after (i) a 110-day acclimation under ambient (921 μatm, naïve) and moderately elevated pCO2 (2870 μatm, pre-exposed); then following (ii) a second 7-day exposure to three pCO2 treatments (ambient: 754 μatm; moderately elevated: 2750 μatm; severely elevated: 4940 μatm), a 7-day return to ambient pCO2 and a third 7-day exposure to two pCO2 treatments (ambient: 967 μatm; moderately elevated: 3030 μatm). Pre-exposed geoducks frontloaded genes for stress and apoptosis/innate immune response, homeostatic processes, protein degradation and transcriptional modifiers. Pre-exposed geoducks were also responsive to subsequent encounters, with gene sets enriched for mitochondrial recycling and immune defence under elevated pCO2 and energy metabolism and biosynthesis under ambient recovery. In contrast, gene sets with higher expression in naïve clams were enriched for fatty-acid degradation and glutathione components, suggesting naïve clams could be depleting endogenous fuels, with unsustainable energetic requirements if changes in carbonate chemistry persist. Collectively, our transcriptomic data indicate that pCO2 priming during post-larval periods could, via gene expression regulation, enhance robustness in bivalves to environmental change. Such priming approaches may be beneficial for aquaculture, as seafood demand intensifies concurrent with increasing climate change in marine systems

    Repeat exposure to hypercapnic seawater modifies growth and oxidative status in a tolerant burrowing clam

    No full text
    Although low levels of thermal stress, irradiance and dietary restriction can have beneficial effects for many taxa, stress acclimation remains little studied in marine invertebrates, even though they are threatened by climate change stressors such as ocean acidification. To test the role of life-stage and stress-intensity dependence in eliciting enhanced tolerance under subsequent stress encounters, we initially conditioned pediveliger Pacific geoduck (Panopea generosa) larvae to ambient and moderately elevated PCO2 (920 μatm and 2800 μatm, respectively) for 110 days. Then, clams were exposed to ambient, moderate or severely elevated PCO2 (750, 2800 or 4900 μatm, respectively) for 7 days and, following 7 days in ambient conditions, a 7-day third exposure to ambient (970 μatm) or moderate PCO2 (3000 μatm). Initial conditioning to moderate PCO2 stress followed by second and third exposure to severe and moderate PCO2 stress increased respiration rate, organic biomass and shell size, suggesting a stress-intensity-dependent effect on energetics. Additionally, stressacclimated clams had lower antioxidant capacity compared with clams under ambient conditions, supporting the hypothesis that stress over postlarval-to-juvenile development affects oxidative status later in life. Time series and stress intensity-specific approaches can reveal life-stages and magnitudes of exposure, respectively, that may elicit beneficial phenotypic variation

    Integrating Discovery-driven Proteomics and Selected Reaction Monitoring To Develop a Noninvasive Assay for Geoduck Reproductive Maturation

    No full text
    Geoduck clams (<i>Panopea generosa</i>) are an increasingly important fishery and aquaculture product along the eastern Pacific coast from Baja California, Mexico, to Alaska. These long-lived clams are highly fecund, although sustainable hatchery production of genetically diverse larvae is hindered by the lack of sexual dimorphism, resulting in asynchronous spawning of broodstock, unequal sex ratios, and low numbers of breeders. The development of assays of gonad physiology could indicate sex and maturation stage as well as be used to assess the status of natural populations. Proteomic profiles were determined for three reproductive maturation stages in both male and female clams using data-dependent acquisition (DDA) of gonad proteins. Gonad proteomes became increasingly divergent between males and females as maturation progressed. The DDA data were used to develop targets analyzed with selected reaction monitoring (SRM) in gonad tissue as well as hemolymph. The SRM assay yielded a suite of indicator peptides that can be used as an efficient assay to determine geoduck gonad maturation status. Application of SRM in hemolymph samples demonstrates that this procedure could effectively be used to assess reproductive status in marine mollusks in a nonlethal manner
    corecore