26 research outputs found

    Interplay between Superconductivity and Magnetism in Rb0.8Fe1.6Se2 under Pressure

    Full text link
    High-pressure magnetization, structural and 57Fe M\"ossbauer studies were performed on superconducting Rb0.8Fe1.6Se2.0 with Tc = 32.4 K. The superconducting transition temperature gradually decreases on increasing pressure up to 5.0 GPa followed by a marked step-like suppression of superconductivity near 6 GPa. No structural phase transition in the Fe vacancy-ordered superstructure is observed in synchrotron XRD studies up to 15.6 GPa, while the M\"ossbauer spectra above 5 GPa reveal the appearance of a new paramagnetic phase and significant changes in the magnetic and electronic properties of the dominant antiferromagnetic phase, coinciding with the disappearance of superconductivity. These findings underline the strong correlation between antiferromagnetic order and superconductivity in phase-separated AxFe2-x/2Se2 (A = K, Rb, Cs) superconductors

    Intercalation effect on hyperfine parameters of Fe in FeSe superconductor with Tc = 42 K

    Full text link
    57Fe-Mossbauer spectra of superconducting beta-FeSe, the Li/NH3 intercalate product and a subsequent sample of this intercalate treated with moist He gas have been measured in temperature range 4.7 - 290 K. A correlation is established between hyperfine parameters and critical temperature Tc in these phases. A strong increase of isomer shift upon intercalation is explained by a charge transfer from the Li/NH3 intercalate to the FeSe layers resulting in an increase of Tc up to 42 K. A significant decrease of the quadrupole splitting above 240 K has been attributed to diffusive motion of Li+ ions within the interlamellar space.Comment: 6 pages, 5 figures, 1 tabl

    Pressure-induced magnetic collapse and metallization of TlFe1.6Se2\mathrm{TlF}{\mathrm{e}}_{1.6}\mathrm{S}{\mathrm{e}}_{2}

    Full text link
    The crystal structure, magnetic ordering, and electrical resistivity of TlFe1.6Se2 were studied at high pressures. Below ~7 GPa, TlFe1.6Se2 is an antiferromagnetically ordered semiconductor with a ThCr2Si2-type structure. The insulator-to-metal transformation observed at a pressure of ~ 7 GPa is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range ~ 7.5 - 11 GPa a remarkable downturn in resistivity, which resembles a superconducting transition, is observed below 15 K. We discuss this feature as the possible onset of superconductivity originating from a phase separation in a small fraction of the sample in the vicinity of the magnetic transition.Comment: 12 pages, 5 figure

    Economic Ideas and Institutional Change: Evidence from Soviet Economic Discourse 1987-1991

    Full text link

    A Room‐Temperature Verwey‐type Transition in Iron Oxide, Fe5_5O6_6

    No full text
    Functional oxides whose physicochemical properties may be reversibly changed at standard conditions are potential candidates for the use in next‐generation nanoelectronic devices. To date, vanadium dioxide (VO2_2) is the only known simple transition‐metal oxide that demonstrates a near‐room‐temperature metal–insulator transition that may be used in such appliances. In this work, we synthesized and investigated the crystals of a novel mixed‐valent iron oxide with an unconventional Fe5_5O6_6 stoichiometry. Near 275 K, Fe5_5O6_6 undergoes a Verwey‐type charge‐ordering transition that is concurrent with a dimerization in the iron chains and a following formation of new Fe−Fe chemical bonds. This unique feature highlights Fe5_5O6_6 as a promising candidate for the use in innovative applications. We established that the minimal Fe−Fe distance in the octahedral chains is a key parameter that determines the type and temperature of charge ordering. This model provides new insights into charge‐ordering phenomena in transition‐metal oxides in general
    corecore