283 research outputs found

    Mediterranean Diet and Breast Density in the Minnesota Breast Cancer Family Study

    Get PDF
    Mediterranean populations’ lower breast cancer incidence has been attributed to a traditional Mediterranean diet, but few studies have quantified Mediterranean dietary pattern intake in relation to breast cancer. We examined the association of a Mediterranean diet scale (MDS) with mammographic breast density as a surrogate marker for breast cancer risk. Participants completed a dietary questionnaire and provided screening mammograms for breast density assessment using a computer-assisted method. Among 1,286 women, MDS was not clearly associated with percent density in multivariate linear regression analyses. Because of previous work suggesting dietary effects limited to smokers, we conducted stratified analyses and found MDS and percent density to be significantly, inversely associated among current smokers (β = –1.68, P = 0.002) but not among nonsmokers (β = –0.08, P = 0.72; P for interaction = 0.008). Our results confirm a previous suggestion that selected dietary patterns may be protective primarily in the presence of procarcinogenic compounds such as those found in tobacco smoke

    Mammographic density, breast cancer risk and risk prediction

    Get PDF
    In this review, we examine the evidence for mammographic density as an independent risk factor for breast cancer, describe the risk prediction models that have incorporated density, and discuss the current and future implications of using mammographic density in clinical practice. Mammographic density is a consistent and strong risk factor for breast cancer in several populations and across age at mammogram. Recently, this risk factor has been added to existing breast cancer risk prediction models, increasing the discriminatory accuracy with its inclusion, albeit slightly. With validation, these models may replace the existing Gail model for clinical risk assessment. However, absolute risk estimates resulting from these improved models are still limited in their ability to characterize an individual's probability of developing cancer. Promising new measures of mammographic density, including volumetric density, which can be standardized using full-field digital mammography, will likely result in a stronger risk factor and improve accuracy of risk prediction models

    Mammographic density and risk of breast cancer by age and tumor characteristics

    Get PDF
    Introduction: Understanding whether mammographic density (MD) is associated with all breast tumor subtypes and whether the strength of association varies by age is important for utilizing MD in risk models. Methods: Data were pooled from six studies including 3414 women with breast cancer and 7199 without who underwent screening mammography. Percent MD was assessed from digitized film-screen mammograms using a computer-assisted threshold technique. We used polytomous logistic regression to calculate breast cancer odds according to tumor type, histopathological characteristics, and receptor (estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor (HER2)) status by age (51%) versus average density (11-25%). Women ages 2.1 cm) versus small tumors and positive versus negative lymph node status (P’s < 0.01). For women ages <55 years, there was a stronger association of MD with ER-negative breast cancer than ER-positive tumors compared to women ages 55–64 and ≥65 years (Page-interaction = 0.04). MD was positively associated with both HER2-negative and HER2-positive tumors within each age group. Conclusion: MD is strongly associated with all breast cancer subtypes, but particularly tumors of large size and positive lymph nodes across all ages, and ER-negative status among women ages <55 years, suggesting high MD may play an important role in tumor aggressiveness, especially in younger women

    A comprehensive evaluation of interaction between genetic variants and use of menopausal hormone therapy on mammographic density.

    Get PDF
    INTRODUCTION: Mammographic density is an established breast cancer risk factor with a strong genetic component and can be increased in women using menopausal hormone therapy (MHT). Here, we aimed to identify genetic variants that may modify the association between MHT use and mammographic density. METHODS: The study comprised 6,298 postmenopausal women from the Mayo Mammography Health Study and nine studies included in the Breast Cancer Association Consortium. We selected for evaluation 1327 single nucleotide polymorphisms (SNPs) showing the lowest P-values for interaction (P int) in a meta-analysis of genome-wide gene-environment interaction studies with MHT use on risk of breast cancer, 2541 SNPs in candidate genes (AKR1C4, CYP1A1-CYP1A2, CYP1B1, ESR2, PPARG, PRL, SULT1A1-SULT1A2 and TNF) and ten SNPs (AREG-rs10034692, PRDM6-rs186749, ESR1-rs12665607, ZNF365-rs10995190, 8p11.23-rs7816345, LSP1-rs3817198, IGF1-rs703556, 12q24-rs1265507, TMEM184B-rs7289126, and SGSM3-rs17001868) associated with mammographic density in genome-wide studies. We used multiple linear regression models adjusted for potential confounders to evaluate interactions between SNPs and current use of MHT on mammographic density. RESULTS: No significant interactions were identified after adjustment for multiple testing. The strongest SNP-MHT interaction (unadjusted P int <0.0004) was observed with rs9358531 6.5kb 5' of PRL. Furthermore, three SNPs in PLCG2 that had previously been shown to modify the association of MHT use with breast cancer risk were found to modify also the association of MHT use with mammographic density (unadjusted P int <0.002), but solely among cases (unadjusted P int SNPĂ—MHTĂ—case-status <0.02). CONCLUSIONS: The study identified potential interactions on mammographic density between current use of MHT and SNPs near PRL and in PLCG2, which require confirmation. Given the moderate size of the interactions observed, larger studies are needed to identify genetic modifiers of the association of MHT use with mammographic density.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13058-015-0625-

    Annexin A1 expression in a pooled breast cancer series: Association with tumor subtypes and prognosis

    Get PDF
    Background: Annexin A1 (ANXA1) is a protein related with the carcinogenesis process and metastasis formation in many tumors. However, little is known about the prognostic value of ANXA1 in breast cancer. The purpose of this study is to evaluate the association between ANXA1 expression, BRCA1/2 germline carriership, specific tumor subtypes and survival in breast cancer patients. Methods: Clinical-pathological information and follow-up data were collected from nine breast cancer studies from the Breast Cancer Association Consortium (BCAC) (n = 5,752) and from one study of familial breast cancer patients with BRCA1/2 mutations (n = 107). ANXA1 expression was scored based on the percentage of immunohistochemical staining in tumor cells. Survival analyses were performed using a multivariable Cox model. Results: The frequency of ANXA1 positive tumors was higher in familial breast cancer patients with BRCA1/2 mutations than in BCAC patients, with 48.6 % versus 12.4 %, respectively; P adj = 1.35; 95 % CI = 1.05-1.73), but the association weakened after 10 years (HRadj = 1.13; 95 % CI = 0.91-1.40). ANXA1 was a significant independent predictor of survival in HER2+ patients (10-years BCSS: HRadj = 1.70; 95 % CI = 1.17-2.45). Conclusions: ANXA1 is overexpressed in familial breast cancer patients with BRCA1/2 mutations and correlated with poor prognosis features: triple negative and poorly differentiated tumors. ANXA1 might be a biomarker candidate for breast cancer survival prediction in high risk groups such as HER2+ cases
    • …
    corecore