24 research outputs found
Expression of 8-oxoguanine DNA glycosylase (Ogg1) in mouse retina
International audienc
Gross tumour volume delineation in anal cancer on T2-weighted and diffusion-weighted MRI - Reproducibility between radiologists and radiation oncologists and impact of reader experience level and DWI image quality
Abstract Purpose To assess how gross tumour volume (GTV) delineation in anal cancer is affected by interobserver variations between radiologists and radiation oncologists, expertise level, and use of T2-weighted MRI (T2W-MRI) vs. diffusion-weighted imaging (DWI), and to explore effects of DWI quality. Methods and materials We retrospectively analyzed the MRIs (T2W-MRI and b800-DWI) of 25 anal cancer patients. Four readers (Senior and Junior Radiologist; Senior and Junior Radiation Oncologist) independently delineated GTVs, first on T2W-MRI only and then on DWI (with reference to T2W-MRI). Maximum Tumour Diameter (MTD) was calculated from each GTV. Mean GTVs/MTDs were compared between readers and between T2W-MRI vs. DWI. Interobserver agreement was calculated as Intraclass Correlation Coefficient (ICC), Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD). DWI image quality was assessed using a 5-point artefact scale. Results Interobserver agreement between radiologists vs. radiation oncologists and between junior vs. senior readers was goodâexcellent, with similar agreement for T2W-MRI and DWI (e.g. ICCs 0.72â0.94 for T2W-MRI and 0.68â0.89 for DWI). There was a trend towards smaller GTVs on DWI, but only for the radiologists (PâŻ=âŻ0.03â0.07). Moderate-severe DWI-artefacts were observed in 11/25 (44%) cases. Agreement tended to be lower in these cases. Conclusion Overall interobserver agreement for anal cancer GTV delineation on MRI is good for both radiologists and radiation oncologists, regardless of experience level. Use of DWI did not improve agreement. DWI artefacts affecting GTV delineation occurred in almost half of the patients, which may severely limit the use of DWI for radiotherapy planning if no steps are undertaken to avoid them
Solubilization and insertion into reverse micelles of the major myelin transmembrane proteolipid
AbstractThe Folch-Pi proteolipid has been isolated from bovine white matter and characterized with respect to phospholipid and glycolipid composition. The protein-lipid complex has been solubilized in aqueous reverse micelles of di(2-ethylhexyl) sodium sulfosuccinate and isooctane. Solubilization of this otherwise water-insoluble proteolipid requires small amounts of water, the percent of solubility being maximum for a low molar ratio of water to surfactant (Wo = 5.6). Unlike hydrophilic proteins, the extent of incorporation into the micellar system is negligible at 50 mM surfactant and reaches 90Vo only at 300 mM. However, the conformation of the proteolipid in reverse micelles as studied by fluorescence emission spectroscopy and circular dichroism was not affected by variations of the surfactant concentration. These results are consistent with the peculiar properties of the aqueous environment of the proteolipid within the reverse micelles and may reflect the membrane-like character of these bio-assemblies
Conformational analysis and crystal structure of {[1-(3-chloro-4-fluorobenzoyl)-4-fluoro piperidin-4-yl]methyl}[(5-methylpyridin-2-yl)methyl]amine, fumaric acid salt.
International audienc
Redox Regulation of Human OGG1 Activity in Response to Cellular Oxidative Stress
International audienceABSTRACT 8-Oxoguanine (8-oxoG), a common and mutagenic form of oxidized guanine in DNA, is eliminated mainly through base excision repair. In human cells its repair is initiated by human OGG1 (hOGG1), an 8-oxoG DNA glycosylase. We investigated the effects of an acute cadmium exposure of human lymphoblastoid cells on the activity of hOGG1. We show that coinciding with alteration of the redox cellular status, the 8-oxoG DNA glycosylase activity of hOGG1 was nearly completely inhibited. However, the hOGG1 activity returned to normal levels once the redox cellular status was normalized. In vitro, the activity of purified hOGG1 was abolished by cadmium and could not be recovered by EDTA. In cells, however, the reversible inactivation of OGG1 activity by cadmium was strictly associated with reversible oxidation of the protein. Moreover, the 8-oxoG DNA glycosylase activity of purified OGG1 and that from crude extracts were modulated by cysteine-modifying agents. Oxidation of OGG1 by the thiol oxidant diamide led to inhibition of the activity and a protein migration pattern similar to that seen in cadmium-treated cells. These results suggest that cadmium inhibits hOGG1 activity mainly by indirect oxidation of critical cysteine residues and that excretion of the metal from the cells leads to normalization of the redox cell status and restoration of an active hOGG1. The results presented here unveil a novel redox-dependent mechanism for the regulation of OGG1 activity