1,911 research outputs found

    Unitary groups acting on Grassmannians associated with a quadratic extension of fields.

    Get PDF
    Let (V,H) be an anisotropic Hermitian space of finite dimension over the algebraic closure of a real closed field K. We determine the orbits of the group of isometries of (V,H) in the set of the K-subspaces of V

    Thermal stability and aggregation of sulfolobus solfataricus b-glycosidase are dependent upon the N-e-methylation of specific lysyl residues: critical role of in vivo post-translational modifications.

    Get PDF
    Methylation in vivo is a post-translational modification observed in several organisms belonging to eucarya, bacteria, and archaea. Although important implications of this modification have been demonstrated in several eucaryotes, its biological role in hyperthermophilic archaea is far from being understood. The aim of this work is to clarify some effects of methylation on the properties of β-glycosidase from Sulfolobus solfataricus, by a structural comparison between the native, methylated protein and its unmethylated counterpart, recombinantly expressed in Escherichia coli. Analysis by Fourier transform infrared spectroscopy indicated similar secondary structure contents for the two forms of the protein. However, the study of temperature perturbation by Fourier transform infrared spectroscopy and turbidimetry evidenced denaturation and aggregation events more pronounced in recombinant than in native β-glycosidase. Red Nile fluorescence analysis revealed significant differences of surface hydrophobicity between the two forms of the protein. Unlike the native enzyme, which dissociated into SDS-resistant dimers upon exposure to the detergent, the recombinant enzyme partially dissociated into monomers. By electrospray mapping, the methylation sites of the native protein were identified. A computational analysis of β-glycosidase three-dimensional structure and comparisons with other proteins from S. solfataricus revealed analogies in the localization of methylation sites in terms of secondary structural elements and overall topology. These observations suggest a role for the methylation of lysyl residues, located in selected domains, in the thermal stabilization of β-glycosidase from S. solfataricu

    Does nonlinear metrology offer improved resolution? Answers from quantum information theory

    Full text link
    A number of authors have suggested that nonlinear interactions can enhance resolution of phase shifts beyond the usual Heisenberg scaling of 1/n, where n is a measure of resources such as the number of subsystems of the probe state or the mean photon number of the probe state. These suggestions are based on calculations of `local precision' for particular nonlinear schemes. However, we show that there is no simple connection between the local precision and the average estimation error for these schemes, leading to a scaling puzzle. This puzzle is partially resolved by a careful analysis of iterative implementations of the suggested nonlinear schemes. However, it is shown that the suggested nonlinear schemes are still limited to an exponential scaling in \sqrt{n}. (This scaling may be compared to the exponential scaling in n which is achievable if multiple passes are allowed, even for linear schemes.) The question of whether nonlinear schemes may have a scaling advantage in the presence of loss is left open. Our results are based on a new bound for average estimation error that depends on (i) an entropic measure of the degree to which the probe state can encode a reference phase value, called the G-asymmetry, and (ii) any prior information about the phase shift. This bound is asymptotically stronger than bounds based on the variance of the phase shift generator. The G-asymmetry is also shown to directly bound the average information gained per estimate. Our results hold for any prior distribution of the shift parameter, and generalise to estimates of any shift generated by an operator with discrete eigenvalues.Comment: 8 page

    Weekly epirubicin plus lonidamine in advanced breast carcinoma

    Get PDF
    : Lonidamine has been demonstrated to potentiate the cytotoxic activity of several antineoplastic drugs, for example anthracyclines. Moreover, epirubicin is considered one of the most active drugs in advanced breast cancer, although optimal dose and schedule remains to be defined. In the present study we have treated 51 patients with advanced breast cancer with a combination of lonidamine (450 mg/day orally from day 1 throughout treatment) and epirubicin (25 mg/m2 i.v.) administered according to a weekly schedule for 24 weeks. Objective responses were observed in 29 out of 51 patients (57%; CR 16%, PR 41%). Liver metastases responded in eight out of 12 evaluable patients (67%). Average response duration was 12.4 months and median overall survival was 23 months (range 1-90+). Toxicity was negligible. The combination of weekly epirubicin and lonidamine is feasible and active in advanced breast cancer patients

    On the squeezed states for n observables

    Full text link
    Three basic properties (eigenstate, orbit and intelligence) of the canonical squeezed states (SS) are extended to the case of arbitrary n observables. The SS for n observables X_i can be constructed as eigenstates of their linear complex combinations or as states which minimize the Robertson uncertainty relation. When X_i close a Lie algebra L the generalized SS could also be introduced as orbit of Aut(L^C). It is shown that for the nilpotent algebra h_N the three generalizations are equivalent. For the simple su(1,1) the family of eigenstates of uK_- + vK_+ (K_\pm being lowering and raising operators) is a family of ideal K_1-K_2 SS, but it cannot be represented as an Aut(su^C(1,1)) orbit although the SU(1,1) group related coherent states (CS) with symmetry are contained in it. Eigenstates |z,u,v,w;k> of general combination uK_- + vK_+ + wK_3 of the three generators K_j of SU(1,1) in the representations with Bargman index k = 1/2,1, ..., and k = 1/4,3/4 are constructed and discussed in greater detail. These are ideal SS for K_{1,2,3}. In the case of the one mode realization of su(1,1) the nonclassical properties (sub-Poissonian statistics, quadrature squeezing) of the generalized even CS |z,u,v;+> are demonstrated. The states |z,u,v,w;k=1/4,3/4> can exhibit strong both linear and quadratic squeezing.Comment: 25 pages, LaTex, 4 .pic and .ps figures. Improvements in text, discussion on generation scheme added. To appear in Phys. Script

    The Pegg-Barnett Formalism and Covariant Phase Observables

    Get PDF
    We compare the Pegg-Barnett (PB) formalism with the covariant phase observable approach to the problem of quantum phase and show that PB-formalism gives essentially the same results as the canonical (covariant) phase observable. We also show that PB-formalism can be extended to cover all covariant phase observables including the covariant phase observable arising from the angle margin of the Husimi Q-function.Comment: 10 page

    The Role of Family/Friend Social Support in Diabetes Self-Management for Minorities with Type 2 Diabetes

    Get PDF
    This study investigated how ethnicity, perceived family/friend social support (FSS), and health behaviors are associated with diabetes self-management (DSM) in minorities. The participants were recruited by community outreach methods and included 174 Cuban-, 121 Haitian- and 110 African-Americans with type 2 diabetes. The results indicated that ethnicity and FSS were associated with DSM. Higher FSS scores were associated with higher DSM scores, independent of ethnicity. There were ethnic differences in several elements of FSS. DSM was highest in Haitian- as compared to African-Americans; yet Haitian Americans had poorer glycemic control. The findings suggest FSS together with ethnicity may influence critical health practices. Studies are needed that further investigate the relationships among minorities with diabetes, their intimate network (family and friends) and the diabetes care process

    Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty

    Get PDF
    In this study, the role of self-validated computing for solving the energy hub-scheduling problem in the presence of multiple and heterogeneous sources of data uncertainties is explored and a new solution paradigm based on affine arithmetic is conceptualised. The benefits deriving from the application of this methodology are analysed in details, and several numerical results are presented and discussed
    corecore