633 research outputs found

    Posterior lumbar interbody fusion using non resorbable poly-ether-ether-ketone versus resorbable poly-l-lactide-co-d,l-lactide fusion devices. Clinical outcome at a minimum of 2-year follow-up

    Get PDF
    Previous papers on resorbable poly-l-lactide-co-d,l-lactide (PLDLLA) cages in spinal fusion have failed to report adequately on patient-centred clinical outcome measures. Also comparison of PLDLLA cage with a traditionally applicable counterpart has not been previously reported. This is the first randomized prospective study that assesses clinical outcome of PLDLLA cage compared with a poly-ether-ether-ketone (PEEK) implant. Twenty-six patients were randomly assigned to undergo instrumented posterior lumbar interbody fusion (PLIF) whereby either a PEEK cage or a PLDLLA cage was implanted. Clinical outcome based on visual analogue scale scores for leg pain and back pain, as well as Oswestry Disability Index (ODI) and SF-36 questionnaires were documented and analysed. When compared with preoperative values, all clinical parameters have significantly improved in the PEEK group at 2 years after surgery with the exception of SF-36 general health, SF-36 mental health and SF-36 role emotional scores. No clinical parameter showed significant improvement at 2 years after surgery compared with preoperative values in the PLDLLA patient group. Only six patients (50%) in the PLDLLA group showed improvement in the VAS scores for leg and back pain as well as the ODI, as opposed to 10 patients (71%) in the PEEK group. One-third of the patients in the PLDLLA group actually reported worsening of their pain scores and ODI. Three cases of mild to moderate osteolysis were seen in the PLDLLA group. Following up on our preliminary report, these 2-year results confirm the superiority of the PEEK implant to the resorbable PLDLLA implant in aiding spinal fusion and alleviating symptoms following PLIF in patients with degenerative spondylolisthesis associated with either canal stenosis or foramen stenosis or both and emanating from a single lumbar segment

    Juvenile idiopathic scoliosis treated with posterior arthrodesis and segmental pedicle screw instrumentation before the age of 9 years: a 5-year follow-up

    Get PDF
    <p>Abstract</p> <p>Study design</p> <p>Retrospective study.</p> <p>Objective</p> <p>To evaluate the radiological results of fusion with segmental pedicle screw fixation in juvenile idiopathic scoliosis with a minimum 5-year follow-up.</p> <p>Summary of background data</p> <p>Progression of spinal deformity after posterior instrumentation and fusion in immature patients has been reported by several authors. Segmental pedicle screw fixation has been shown to be effective in controlling both coronal and sagittal plane deformities. However, there is no long term study of fusion with segmental pedicle screw fixation in these group of patients.</p> <p>Methods</p> <p>Seven patients with juvenile idiopathic scoliosis treated by segmental pedicle screw fixation and fusion were analyzed. The average age of the patients was 7.4 years (range 5–9 years) at the time of the operation. All the patients were followed up 5 years or more (range 5–8 years) and were all Risser V at the most recent follow up. Three dimensional reconstruction of the radiographs was obtained and 3DStudio Max software was used for combining, evaluating and modifying the technical data derived from both 2d and 3d scan data.</p> <p>Results</p> <p>The preoperative thoracic curve of 56 ± 15° was corrected to 24 ± 17° (57% correction) at the latest follow-up. The lumbar curve of 43 ± 14° was corrected to 23 ± 6° (46% correction) at the latest follow-up. The preoperative thoracic kyphosis of 37 ± 13° and the lumbar lordosis of 33 ± 13° were changed to 27 ± 13° and 42 ± 21°, respectively at the latest follow-up. None of the patients showed coronal decompensation at the latest follow-up. Four patients had no evidence of crankshaft phenomenon. In two patients slight increase in Cobb angle at the instrumented segments with a significant increase in AVR suggesting crankshaft phenomenon was seen. One patient had a curve increase in both instrumented and non instrumented segments due to incorrect strategy.</p> <p>Conclusion</p> <p>In juvenile idiopathic curves of Risser 0 patients with open triradiate cartilages, routine combined anterior fusion to prevent crankshaft may not be warranted by posterior segmental pedicle screw instrumentation.</p

    Anabolic Therapies

    Get PDF
    The striking clinical benefits of intermittent parathyroid hormone in osteoporosis have begun a new era of skeletal anabolic agents. Recombinant human parathyroid hormone (rhPTH) (1–34) is the first US Food and Drug Administration–approved anabolic therapy. Its use has been limited by the need for subcutaneous injection. Newer delivery systems include transdermal and oral preparations. Newer anabolic therapies include monoclonal antibody to sclerostin, a potent inhibitor of osteoblastogenesis; and use of bone morphogenetic proteins and parathyroid hormone–related protein PTHrP, a calcium-regulating hormone similar to PTH

    What should an ideal spinal injury classification system consist of? A methodological review and conceptual proposal for future classifications

    Get PDF
    Since Böhler published the first categorization of spinal injuries based on plain radiographic examinations in 1929, numerous classifications have been proposed. Despite all these efforts, however, only a few have been tested for reliability and validity. This methodological, conceptual review summarizes that a spinal injury classification system should be clinically relevant, reliable and accurate. The clinical relevance of a classification is directly related to its content validity. The ideal content of a spinal injury classification should only include injury characteristics of the vertebral column, is primarily based on the increasingly routinely performed CT imaging, and is clearly distinctive from severity scales and treatment algorithms. Clearly defined observation and conversion criteria are crucial determinants of classification systems’ reliability and accuracy. Ideally, two principle spinal injury characteristics should be easy to discern on diagnostic images: the specific location and morphology of the injured spinal structure. Given the current evidence and diagnostic imaging technology, descriptions of the mechanisms of injury and ligamentous injury should not be included in a spinal injury classification. The presence of concomitant neurologic deficits can be integrated in a spinal injury severity scale, which in turn can be considered in a spinal injury treatment algorithm. Ideally, a validation pathway of a spinal injury classification system should be completed prior to its clinical and scientific implementation. This review provides a methodological concept which might be considered prior to the synthesis of new or modified spinal injury classifications
    corecore