7 research outputs found
Propuesta para el Manejo Integral de Residuos Sólidos Generados en el Mall de los Andes - Ambato. 2012
La propuesta del Plan de Manejo Integral de Residuos Sólidos se elaboró para el centro comercial Mall de los Andes ubicado en el cantón Ambato perteneciente a la provincia de Tungurahua. Las características del presente proyecto ameritan a que se realice un método analítico, debido a que se inicia por la identificación de cada una de las partes que caracterizan la problemática existente, de esa manera se establece la relación causa-efecto entre los elementos que compone el objeto de investigación; la información se obtuvo mediante técnicas de investigación como observación, entrevistas y encuestas al personal, recopilación de datos in situ lo que permitió detallar el estado actual de manejo de residuos sólidos y a partir de esto elaborar dicho Plan. Los resultados obtenidos del estudio señalan que la producción per cápita es de 0,49 kg/hab/día, esto está dentro del rango de países de bajos ingresos, de donde se destaca una producción mayoritaria de desechos comunes, en su mayoría envases desechables provenientes del patio de comidas que corresponde al 76,60 %. De tal modo el Plan de Manejo Integral de Residuos Sólidos incluye siete programas: medidas preventivas, correctivas y compensatorias; información pública, educación ambiental y relaciones comunitarias; señalización ambiental; manejo de desechos sólidos; contingencias, mantenimiento y seguridad; salud ocupacional y monitoreo ambiental. Se concluye que el Plan de Manejo Integral de Residuos Sólidos se formuló con el fin de implementar medidas prácticas y necesarias para prevenir, minimizar, mitigar y corregir los impactos y efectos ambientales positivos y negativos que puedan derivarse del manejo de los desechos sólidos generados. Se recomienda realizar la capacitación ambiental descrita en el programa y la implementación de islas de clasificación de residuos en puntos estratégicos del Mall de los Andes para facilitar su manejo dentro de las instalaciones y una adecuada disposición final
Efeito das condições de cura no comportamento da resistência à compressão em resíduos de cerâmica ativados por álcali
The industrial sector is responsible for the generation of a large amount of solid waste, of which some is partially recycled, but the majority is deposited in landfills or landfills causing various negative impacts on the environment. Alkaline cements are attracting growing interest for their potential to allow the industry to operate within the constraints imposed on CO2 emissions. The objective of this research was to know the effect of different curing conditions on the compressive strength behavior of alkaline activated ceramic residues. As a result, it was determined that an alkali-activated matrix is significantly influenced when cured at a temperature of 70 ° C, reaching, at 90 days of age, a compressive strength of up to 39.3 MPa in contrast to 27.08 MPa. when curing was carried out in environmental conditions of 20 ° C (± 0.5 ° C) and 60% (± 5%) of relative humidity (RH). This work was complemented with a microstructural analysis that included Scanning Electron Microscopy (SEM) and X-ray Energy Dispersion Analyzer (EDX).El sector industrial es responsable de la generación de una gran cantidad de residuos
sólidos, de los cuales algunos son parcialmente reciclados, pero la mayoría son
depositados en vertederos o rellenos sanitarios provocando diversos impactos negativos
en el medio ambiente. Los cementos alcalinos están atrayendo un interés creciente por su
potencial para permitir que la industria opere dentro de las limitaciones impuestas a las
emisiones de CO2. La presente investigación tuvo como objetivo conocer el efecto de
diferentes condiciones de curado sobre el comportamiento de resistencia a compresión de
los residuos cerámicos activados alcalinamente. Como resultado se determinó que una
matriz álcali-activada es significativamente influenciada cuando se cura con una
temperatura de 70°C alcanzando, a los 90 días de edad, una resistencia a la compresión de
hasta 39,3 MPa en contraste con 27,08 MPa cuando el curado se realizó en condiciones
ambientales de 20°C (± 0,5 ° C) y 60% (± 5%) de humedad relativa (RH). Este trabajo se
complementó con un análisis microestructural que incluyó Microscopía electrónica de
barrido (SEM) y Analizador de dispersión de energía de rayos X (EDX).O setor industrial é responsável pela geração de grande quantidade de resíduos sólidos, alguns
deles parcialmente reciclados, mas a maior parte é depositada em aterros ou aterros sanitários
causando diversos impactos negativos ao meio ambiente. Os cimentos alcalinos estão atraindo
cada vez mais interesse por seu potencial de permitir que a indústria opere dentro das restrições
impostas às emissões de CO2. O objetivo desta pesquisa foi conhecer o efeito de diferentes
condições de cura no comportamento da resistência à compressão de resíduos cerâmicos alcalinos
ativados. Como resultado, determinou-se que uma matriz alcalina ativada é significativamente
influenciada quando curada a uma temperatura de 70 ° C, atingindo, aos 90 dias de idade, uma
resistência à compressão de até 39,3 MPa em contraste com 27,08 MPa. quando a cura foi
realizada em condições ambientais de 20 ° C (± 0,5 ° C) e 60% (± 5%) de umidade relativa (UR).
Este trabalho foi complementado com uma análise microestrutural que incluiu Microscopia
Eletrônica de Varredura (MEV) e Analisador de Dispersão de Energia de Raios-X (EDX)
Mechanical characterization of masonry built with iCEBs of granite residual soils with cement-lime stabilization
The environmental impact due to the overexploitation of nonrenewable resources, the processing and transportation of materials, and waste production is a global concern that the construction industry must urgently address, since it is among the greatest contributors. Earth construction can be seen as an alternative building solution, enhancing sustainability, despite traditional techniques being nowadays in disuse in most developed countries. Construction with interlocking compressed earth blocks (iCEBs) is a recently developed technique, put in evidence in the last few decades, for overcoming many earth construction limitations. Here, this technique is studied as a sustainable building solution for Northern Portugal, where the typical soils are sandy, granitic residual soils with low clay content. These soils typically demand cement stabilization to produce earthen materials, which compromise the sustainability of the construction solution. In order to improve sustainability, stabilization with hydraulic lime is proposed as a partial replacement of cement. For this purpose, the properties of the selected soil were characterized through a set of geotechnical tests, with different percentages of cement and lime in the mixture composition tested, concerning the compressive strength of the specimens. A mixture composed of 87.5% of soil, 7.5% of cement, and 5% of lime was shown to be the most suitable for producing iCEBs with adequate mechanical performance. The compressive behavior of the iCEBs masonry was characterized by testing prisms and wallettes, considering both dry stack and mortar joints cases. The obtained results showed that using mortar in the bed joints allows for the improvement of the compressive strength (a 5%–18% increase) and Young’s modulus (a 65%–92% increase) of the masonry. Thus, it can be concluded that masonry built with locally produced iCEBs and stabilized with cement and lime is a feasible building solution, for a sustainable earth masonry built from sandy granitic residual soils, where the mechanical behavior is substantially enhanced by using bed-joint mortar.This work was partly financed by national funds, through the FCT Portuguese Foundation for Science and Technology, under the projects UIDB/00616/2020 and UIDP/00616/2020 for the Unit Institute CQ-VR and UIDB/04029/2020 for the Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE)
Sustainability assessment of half-sandwich panels based on alkali-activated ceramic/slag wastes cement versus conventional building solutions
This study assessed the sustainability of two partition walls and intended to contribute to the Circular Economy in the construction sector. A life cycle approach and a multi-criteria decision support method were applied to know the environmental, functional, and economic performances of the production process of half-sandwich panels based on alkali-activated ceramic/slag waste cement, choosing as system boundary the method “cradle to gate”. The proposed building solutions differ from each other in the type of insulating material used, either extruded polystyrene foam (APXPS) or expanded cork agglomerate board (APICB). Besides, a comparative analysis of the developed building solutions versus three reference constructive solutions: i) a conventional heavyweight partition wall, ii) a lightweight gypsum wall panel, and iii) a conceptual lightweight sandwich membrane building solution was performed. Results showed that the two proposed half-sandwich wall panels (APXPS and APICB) resulted in the most sustainable alternatives, of which the APXPS obtained the best overall results since it combined the best environmental, functional, and economic behavior. Besides, the environmental contribution analysis determined that the greatest environmental burden to the Global Warming Potential (GWP), in the case of the APXPS was associated with the XPS (57%), being the alkali activator (23%) placed as the second major contributor. When the ICB was used as the insulation layer, the energy used (nearly 38%) and the sodium silicate (about 17%) were the larger contributors to CO2 emissions. It is worth mentioning that the use of ICB represented a negative contribution (of about −34%) to the GWP category.This work was partly financed by FCT/MCTES through national
funds (PIDDAC) under the R&D Unit Institute for Sustainability and
Innovation in Structural Engineering (ISISE), under reference UIDB/
04029/2020, and the research project “CirMat: CIRcular aggregates for
sustainable road and building MATerials”(ref. 16_Call#2)is funded by
Iceland, Liechtenstein and Norway through the EEA Grants and Norway
Grants, operationalized by the Portuguese Office of the Secretary of
State for the Environment. RENEw, POCI-01-0247-FEDER-033834, that
was co-funded by Fundo Europeu de Desenvolvimento Regional
(FEDER), with Programa Operacional da Competitividade e Internacionalizaçao ˜ do Portugal 2020 (COMPETE 2020)
The authors acknowledge the support of the DST group construction
company for funding the project Chair DST/IB-S: Smart Systems for
Construction
Ativação alcalina de resíduos cerâmicos para incorporação em painéis não estruturais
Programa doutoral em Solid Waste Management and TreatmentEste estudo foi motivado principalmente pela necessidade cada vez mais urgente de desenvolver ligantes alternativos ao conhecido Cimento Portland Ordinário (OPC). Assim, o desenvolvimento de novos cimentos alcalinos, utilizando diferentes resíduos industriais, muitos dos quais ainda em grande parte inexplorados, é uma solução promissora para a construção civil. Em todo o mundo, os materiais cerâmicos são amplamente utilizados na construção, no entanto, 30% da produção total de cerâmica é transformada em resíduo e 45% dos resíduos de construção e demolição resultam de materiais cerâmicos. Neste contexto, o principal objetivo deste trabalho foi investigar o potencial de dois resíduos industriais abundantes e menos comuns em cimentos alcalinos: resíduos cerâmicos (RC) ‒ principal precursor ‒ e escória de forno panela (LFS) ‒ para correção de composição. Silicato de sódio (SS) foi utilizado como o principal ativador em cimentos alcalinos para incorporação em painéis não estruturais. Para atingir este objetivo foi inicialmente realizada uma ampla campanha experimental para determinar a melhor formulação. A mistura selecionada (75% CW + 25% LFS) foi reforçada com diferentes teores (0%, 0,5 % e 1% em volume) de fibras de poliacrilonitrila (PAN). Foram testadas duas condições de cura: temperatura de 70°C e 20°C com 60% HR. Estas misturas foram avaliadas quanto às suas propriedades físicas, mecânicas, mineralógicas e microestruturais, aos 14, 28 e 90 dias de cura. Os resultados mostraram que a solução mais adequada para a finalidade específica, ou seja, a execução de painéis não estruturais, foi o cimento alcalino ativado (AAc) curado à temperatura ambiente, contendo 1% de fibra de PAN. Posteriormente, foram desenvolvidas duas soluções de painéis sanduíche, onde cada uma era composta por uma fina camada de AAc e uma camada isolante mais espessa de espuma de poliestireno extrudido ou aglomerado de cortiça expandida. Os resultados do comportamento mecânico indicaram a viabilidade do fabrico destes painéis, embora existam diferenças claras entre as duas soluções propostas foram observadas. Os resultados também demonstram que a tecnologia de ativação alcalina aumenta a condutibilidade térmica do AAc. A caracterização térmica dos painéis evidência desempenhos promissores após comparação com os materiais e soluções de construção correntes. Finalmente, a avaliação de sustentabilidade revelou que os dois painéis sanduíche propostos eram as alternativas mais sustentáveis em comparação com as três tecnologias convencionais selecionadas, uma vez que melhor combina os fatores ambientais, funcionais e económicos.This study was mostly motivated by the increasingly urgent need to develop alternative binders to the well-known Ordinary Portland Cement (OPC). In this way, the development of new alkali-activated materials, using different industrial by-products or wastes, many of which are still largely unexplored, is a promising solution for the construction industry. Worldwide, ceramic materials are extensively used in different types of construction, with a significant percentage ending up as a waste. Two significant numbers support this paradigm – approximately 30% of the total ceramic production is transformed in waste, and 45% of the construction and demolition waste result from ceramic materials. Thus, this study aimed to investigate the potential of two abundant and, at the same time, less common industrial wastes in alkaline cements: ceramic wastes (CW) ‒ as a main precursor, and ladle furnace slag (LFS) ‒ for composition correction. Sodium silicate (SS) was used as the main activator for the alkali activated cements that were incorporated in non-structural panels. To accomplish this objective, a comprehensive experimental campaign to determine the best blend composition was carried out, first. The selected mixture (75% CW + 25% LFS / SS-based) was reinforced using polyacrylonitrile (PAN) fibers with different content (0%, 0.5%, and 1% in volume). Moreover, two curing conditions were experimented, i.e., thermal curing under 70°C and 60% HR ± 5% and curing at ambient temperature (20°C and 60% HR ± 5%). Up to this point, all the mixtures were evaluated with respect to their physical, mechanical, mineralogical, and microstructure properties at 14, 28, and 90 curing days. Results showed that the most suitable solution for the specific purpose of its application, i.e., the manufacture of non-structural panels, was the alkali-activated cement (AAc) cured at ambient temperature containing 1% PAN fiber. Afterwards, two sandwich panel solutions were developed, each was composed of a thin layer of AAc and a thicker insulating layer of extruded polystyrene foam or expanded cork agglomerate. The results of the mechanical behavior indicated the feasibility of manufacturing these panels, although clear differences between the two proposed solutions were observed. Findings also suggested that the alkali-activation technology improves the thermal conductivity of the developed AAc. Thermal characterization of the two panels showed a promising performance when compared to currently available building materials. Furthermore, a Sustainability Assessment revealed that the two proposed half-sandwich panels were the most sustainable alternatives compared to the three selected conventional technologies since they combined the best the environmental, functional, and economic factors.This work was partially supported by the Secretary of Higher Education, Science, Technology, and Innovation, SENESCYT (Spanish acronym) from Ecuador, reference No. CZ03-000052-2017. As well, it was supported in different stages by the research projects, namely, “Geo-Design” (NORTE-01-0247-FEDER-017501), “NextSea-Next generation monitoring of coastal systems in a scenario of global changes” (NORTE-01-0145-FEDER-000032), through funds from NORTE 2020 (Programa Operacional Regional do Norte) and FEDER (European Regional Development Fund), and “CirMat - CIRcular Aggregates for SUStainable road and building MATerials” (UMINHO/BID/2021/22), financed by the Environment, Climate and Low carbon Economy Programme, between the Financial Mechanism Committee established by Iceland, Liechtenstein and Noway and Portugal
Effect of curing conditions on compressive strength behavior on alkali-activated ceramic wastes
The industrial sector is responsible for the generation of a large amount of solid waste, of which some is partially recycled, but the majority is deposited in landfills or landfills causing various negative impacts on the environment. Alkaline cements are attracting growing interest for their potential to allow the industry to operate within the constraints imposed on CO2 emissions. The objective of this research was to know the effect of different curing conditions on the compressive strength behavior of alkaline activated ceramic residues. As a result, it was determined that an alkali-activated matrix is significantly influenced when cured at a temperature of 70 ° C, reaching, at 90 days of age, a compressive strength of up to 39.3 MPa in contrast to 27.08 MPa. when curing was carried out in environmental conditions of 20 ° C (± 0.5 ° C) and 60% (± 5%) of relative humidity (RH). This work was complemented with a microstructural analysis that included Scanning Electron Microscopy (SEM) and X-ray Energy Dispersion Analyzer (EDX)