342 research outputs found

    Addressing Noncommunicable Disease on Short-Term Medical Trips: A Longitudinal Study of Hypertension Treatment in Santo Domingo

    Get PDF
    Background: Noncommunicable diseases (NCDs) are the leading cause of mortality worldwide and pose complex challenges in developing nations. Short-term medical trips, which often operate independently of government and pharmaceutical companies, are in a unique position to address NCDs in developing nations. In 2010, the Dominican Aid Society of Virginia shifted the focus of their semiannual clinic to addressing NCDs in ParaΓ­so, Santo Domingo. Objective: This study analyzes the longitudinal impact of a short-term medical trip on the control of hypertension in their patient population. Methods: Returning patients were identified through a review of medical records from 2014 and 2016. A sample of patients who only visited in either 2014 or 2016 were matched on sex and age and served as an internal comparison group. A generalized linear mixed model was applied to assess changes in blood pressure, the proportion of patients receiving blood pressure treatment, and the intensity of blood pressure treatment within and between returning and new patients over the study period. Findings: There was a significant decrease in diastolic blood pressure within returning patients. Change in systolic blood pressure was significantly different between returning and new patients, with improvement in returning patients. There was a significant increase in the proportion of new patients receiving blood pressure treatment and a higher intensity of blood pressure treatment over time. The change in the proportion of patients receiving blood pressure treatment in the new patient group was significantly higher than that of the returning patient group. ConclusionsShort-term medical trips with a recurrent presence in a community may improve control of hypertension and other NCDs in developing nations. Further research into the impact that short-term medical trips may have on NCDs is needed

    A Toolkit and Robust Pipeline for the Generation of Fosmid-Based Reporter Genes in C. elegans

    Get PDF
    Engineering fluorescent proteins into large genomic clones, contained within BACs or fosmid vectors, is a tool to visualize and study spatiotemporal gene expression patterns in transgenic animals. Because these reporters cover large genomic regions, they most likely capture all cis-regulatory information and can therefore be expected to recapitulate all aspects of endogenous gene expression. Inserting tags at the target gene locus contained within genomic clones by homologous recombination (β€œrecombineering”) represents the most straightforward method to generate these reporters. In this methodology paper, we describe a simple and robust pipeline for recombineering of fosmids, which we apply to generate reporter constructs in the nematode C. elegans, whose genome is almost entirely covered in an available fosmid library. We have generated a toolkit that allows for insertion of fluorescent proteins (GFP, YFP, CFP, VENUS, mCherry) and affinity tags at specific target sites within fosmid clones in a virtually seamless manner. Our new pipeline is less complex and, in our hands, works more robustly than previously described recombineering strategies to generate reporter fusions for C. elegans expression studies. Furthermore, our toolkit provides a novel recombineering cassette which inserts a SL2-spliced intercistronic region between the gene of interest and the fluorescent protein, thus creating a reporter controlled by all 5β€² and 3β€² cis-acting regulatory elements of the examined gene without the direct translational fusion between the two. With this configuration, the onset of expression and tissue specificity of secreted, sub-cellular compartmentalized or short-lived gene products can be easily detected. We describe other applications of fosmid recombineering as well. The simplicity, speed and robustness of the recombineering pipeline described here should prompt the routine use of this strategy for expression studies in C. elegans

    Verifying the relationships of defect site and enhanced photocatalytic properties of modified ZrO2 nanoparticles evaluated by in-situ spectroscopy and STEM-EELS

    Get PDF
    Base treatment and metal doping were evaluated as means of enhancing the photocatalytic activity of ZrO2 nanoparticles (NPs) via the generation of oxygen vacancies (O-vS), and the sites responsible for this enhancement were identified and characterized by spectroscopic and microscopic techniques. We confirmed that O-vS produced by base treatment engaged in photocatalytic activity for organic pollutant degradation, whereas surface defects introduced by Cr-ion doping engaged in oxidative catalysis of molecules. Moreover, we verified that base-treated ZrO2 NPs outperformed their Cr-ion doped counterparts as photocatalysts using in situ X-ray photoelectron spectroscopy and scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS). Thus, our study provides valuable information on the origin of the enhanced photocatalytic activity of modified ZrO2 NPs and demonstrates the practicality of in situ spectroscopy and STEM-EELS for the evaluation of highly efficient metal oxide photocatalysts

    Dynamics of Multiple Trafficking Behaviors of Individual Synaptic Vesicles Revealed by Quantum-Dot Based Presynaptic Probe

    Get PDF
    Although quantum dots (QDs) have provided invaluable information regarding the diffusive behaviors of postsynaptic receptors, their application in presynaptic terminals has been rather limited. In addition, the diffraction-limited nature of the presynaptic bouton has hampered detailed analyses of the behaviors of synaptic vesicles (SVs) at synapses. Here, we created a quantum-dot based presynaptic probe and characterized the dynamic behaviors of individual SVs. As previously reported, the SVs exhibited multiple exchanges between neighboring boutons. Actin disruption induced a dramatic decrease in the diffusive behaviors of SVs at synapses while microtubule disruption only reduced extrasynaptic mobility. Glycine-induced synaptic potentiation produced significant increases in synaptic and inter-boutonal trafficking of SVs, which were NMDA receptor- and actin-dependent while NMDA-induced synaptic depression decreased the mobility of the SVs at synapses. Together, our results show that sPH-AP-QD revealed previously unobserved trafficking properties of SVs around synapses, and the dynamic modulation of SV mobility could regulate presynaptic efficacy during synaptic activity

    The LabelHash algorithm for substructure matching

    Get PDF
    Background: There is an increasing number of proteins with known structure but unknown function. Determining their function would have a significant impact on understanding diseases and designing new therapeutics. However, experimental protein function determination is expensive and very time-consuming. Computational methods can facilitate function determination by identifying proteins that have high structural and chemical similarity. Results: We present LabelHash, a novel algorithm for matching substructural motifs to large collections of protein structures. The algorithm consists of two phases. In the first phase the proteins are preprocessed in a fashion that allows for instant lookup of partial matches to any motif. In the second phase, partial matches for a given motif are expanded to complete matches. The general applicability of the algorithm is demonstrated with three different case studies. First, we show that we can accurately identify members of the enolase superfamily with a single motif. Next, we demonstrate how LabelHash can complement SOIPPA, an algorithm for motif identification and pairwise substructure alignment. Finally, a large collection of Catalytic Site Atlas motifs is used to benchmark the performance of the algorithm. LabelHash runs very efficiently in parallel; matching a motif against all proteins in the 95 % sequence identity filtered non-redundant Protein Data Bank typically takes no more than a few minutes. The LabelHash algorithm is available through a web server and as a suite of standalone programs a

    PolyADP-Ribosylation Is Required for Pronuclear Fusion during Postfertilization in Mice

    Get PDF
    BACKGROUND: During fertilization, pronuclear envelope breakdown (PNEB) is followed by the mingling of male and female genomes. Dynamic chromatin and protein rearrangements require posttranslational modification (PTM) for the postfertilization development. METHODOLOGY/PRINCIPAL FINDINGS: Inhibition of poly(ADP-ribose) polymerase activity (PARylation) by either PJ-34 or 5-AIQ resulted in developmental arrest of fertilized embryos at the PNEB. PARylation inhibition affects spindle bundle formation and phosphorylation of Erk molecules of metaphase II (MII) unfertilized oocytes. We found a frequent appearance of multiple pronuclei (PN) in the PARylation-inhibited embryos, suggesting defective polymerization of tubulins. Attenuated phosphorylation of lamin A/C by PARylation was detected in the PARylation-inhibited embryos at PNEB. This was associated with sustained localization of heterodomain protein 1 (HP1) at the PN of the one-cell embryos arrested by PARylation inhibition. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that PARylation is required for pronuclear fusion during postfertilization processes. These data further suggest that PARylation regulates protein dynamics essential for the beginning of mouse zygotic development. PARylation and its involving signal-pathways may represent potential targets as contraceptives

    Shunting Inhibition Controls the Gain Modulation Mediated by Asynchronous Neurotransmitter Release in Early Development

    Get PDF
    The sensitivity of a neuron to its input can be modulated in several ways. Changes in the slope of the neuronal input-output curve depend on factors such as shunting inhibition, background noise, frequency-dependent synaptic excitation, and balanced excitation and inhibition. However, in early development GABAergic interneurons are excitatory and other mechanisms such as asynchronous transmitter release might contribute to regulating neuronal sensitivity. We modeled both phasic and asynchronous synaptic transmission in early development to study the impact of activity-dependent noise and short-term plasticity on the synaptic gain. Asynchronous release decreased or increased the gain depending on the membrane conductance. In the high shunt regime, excitatory input due to asynchronous release was divisive, whereas in the low shunt regime it had a nearly multiplicative effect on the firing rate. In addition, sensitivity to correlated inputs was influenced by shunting and asynchronous release in opposite ways. Thus, asynchronous release can regulate the information flow at synapses and its impact can be flexibly modulated by the membrane conductance

    Efficient Transmission of Mixed Plasmodium falciparum/vivax Infections From Humans to Mosquitoes

    Get PDF
    BACKGROUND: In Southeast Asia, people are often coinfected with different species of malaria (Plasmodium falciparum [Pf] and Plasmodium vivax [Pv]) as well as with multiple clones of the same species. Whether particular species or clones within mixed infections are more readily transmitted to mosquitoes remains unknown. METHODS: Laboratory-reared Anopheles dirus were fed on blood from 119 Pf-infected Cambodian adults, with 5950 dissected to evaluate for transmitted infection. Among 12 persons who infected mosquitoes, polymerase chain reaction and amplicon deep sequencing were used to track species and clone-specific transmission to mosquitoes. RESULTS: Seven of 12 persons that infected mosquitoes harbored mixed Pf/Pv infection. Among these 7 persons, all transmitted Pv with 2 transmitting both Pf and Pv, leading to Pf/Pv coinfection in 21% of infected mosquitoes. Up to 4 clones of each species were detected within persons. Shifts in clone frequency were detected during transmission. However, in general, all parasite clones in humans were transmitted to mosquitoes, with individual mosquitoes frequently carrying multiple transmitted clones. CONCLUSIONS: Malaria diversity in human hosts was maintained in the parasite populations recovered from mosquitoes fed on their blood. However, in persons with mixed Pf/Pv malaria, Pv appears to be transmitted more readily, in association with more prevalent patent gametocytemia
    • …
    corecore