17 research outputs found

    Micropropagation and conservation of selected endangered anticancer medicinal plants from the Western Ghats of India

    Get PDF
    Globally, cancer is a constant battle which severely affects the human population. The major limitations of the anticancer drugs are the deleterious side effects on the quality of life. Plants play a vital role in curing many diseases with minimal or no side effects. Phytocompounds derived from various medicinal plants serve as the best source of drugs to treat cancer. The global demand for phytomedicines is mostly reached by the medicinal herbs from the tropical nations of the world even though many plant species are threatened with extinction. India is one of the mega diverse countries of the world due to its ecological habitats, latitudinal variation, and diverse climatic range. Western Ghats of India is one of the most important depositories of endemic herbs. It is found along the stretch of south western part of India and constitutes rain forest with more than 4000 diverse medicinal plant species. In recent times, many of these therapeutically valued herbs have become endangered and are being included under the red-listed plant category in this region. Due to a sharp rise in the demand for plant-based products, this rich collection is diminishing at an alarming rate that eventually triggered dangerous to biodiversity. Thus, conservation of the endangered medicinal plants has become a matter of importance. The conservation by using only in situ approaches may not be sufficient enough to safeguard such a huge bio-resource of endangered medicinal plants. Hence, the use of biotechnological methods would be vital to complement the ex vitro protection programs and help to reestablish endangered plant species. In this backdrop, the key tools of biotechnology that could assist plant conservation were developed in terms of in vitro regeneration, seed banking, DNA storage, pollen storage, germplasm storage, gene bank (field gene banking), tissue bank, and cryopreservation. In this chapter, an attempt has been made to critically review major endangered medicinal plants that possess anticancer compounds and their conservation aspects by integrating various biotechnological tool

    Mast cells in human and experimental cardiometabolic diseases

    No full text
    Mast cells, like many other types of inflammatory cell, perform pleiotropic roles in cardiometabolic diseases such as atherosclerosis, abdominal aortic aneurysms, obesity, and diabetes mellitus, as well as complications associated with these diseases. Low numbers of mast cells are present in the heart, aorta, and adipose tissue of healthy humans, but patients with cardiometabolic diseases and animals with experimentally-induced cardiometabolic pathologies have high numbers of mast cells with increased activity in the affected tissues. Mediators released by the activated mast cells, such as chemokines, cytokines, growth factors, heparin, histamine, and proteases, not only function as biomarkers of cardiometabolic diseases, but might also directly contribute to the pathogenesis of such diseases. Mast-cell mediators impede the functions of vascular cells, the integrity of the extracellular matrix, and the activity of other inflammatory cells, thereby contributing to the pathobiology of the conditions at multiple levels. In mouse models, mast-cell activation aggravates the progression of various cardiometabolic pathologies, whereas a genetic deficiency or pharmacological stabilization of mast cells, or depletion or inhibition of specific mast-cell mediators, tends to delay the progression of such conditions. Pharmacological inhibition of mast-cell activation or their targeted effector functions offers potential novel therapeutic strategies for patients with cardiometabolic disorders.Biopharmaceutic
    corecore