18 research outputs found

    Extravascular Lung Water Correlates Multiorgan Dysfunction Syndrome and Mortality in Sepsis

    Get PDF
    BACKGROUND: This study was designated to investigate whether increased extravascular lung water index (EVLWI) may correlate multiple organ dysfunction syndrome (MODS) and mortality in sepsis. METHODS: We designed a prospective cohort study in an intensive care unit of a tertiary care hospital. Sixty-seven patients with severe sepsis were included. Data were used to determine an association between EVLWI and the development of MODS and mortality. These connections were determined by the multiple logistic regression, plotting the receiver operating characteristic (ROC) curve and by Spearman test. RESULTS: EVLWI levels were higher in MODS patients on day 1 (median (IQR), 18(12.8-23.9) ml/kg, n = 38, p<0.0001) than in those without (median (IQR), 12.4 (7.9-16.3) ml/kg, n = 29) and day 3 (median (IQR), 17.8 (11.2-22.8) ml/kg, n = 29, p = 0.004) than in those without (median (IQR), 12.4 (8.0-16.3) ml/kg, n = 29). EVLWI was used as an independent predictor of the development of MODS (odds ratio, 1.6; p = 0.005; 95% confidence interval, 1.2∼2.2) during ICU stay. The area under the ROC curve showed that EVLWI levels could predict MODS (0.866) and mortality (0.881) during ICU stay. Meanwhile, the higher of SOFA score, the more EVLWI was found on day 1 (r = 0.7041, p<0.0001) and day 3 (r = 0.7732, p<0.0001). CONCLUSIONS: Increased EVLWI levels correlates development of MODS and mortality during the patients' ICU stay. Further more, the potential of novel treatment in severe sepsis with lung injury may develop

    Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI) and enhanced generation of nitric oxide (NO). We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS), which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy.</p> <p>Methods</p> <p>Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (V<sub>T</sub>) of 6 mL/kg and FiO<sub>2</sub> 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8) keeping V<sub>T</sub> and FiO<sub>2</sub> unchanged, respiratory rate (RR) 25 inflations/min and PEEP 4 cm H<sub>2</sub>O for the following 8 hrs; an injuriously ventilated group with V<sub>T</sub> of 12 mL/kg, zero end-expiratory pressure, and FiO<sub>2</sub> and RR unchanged (INJV; n = 8) and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI) 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8). We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI). We measured plasma nitrite/nitrate (NOx) levels and examined lung biopsies for lung injury score (LIS).</p> <p>Results</p> <p>Both the injuriously ventilated groups demonstrated a 2–3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group.</p> <p>Conclusion</p> <p>Inhibition of nNOS improved gas exchange, but did not reduce lung water extravasation following injurious ventilation after pneumonectomy in sheep.</p
    corecore