546 research outputs found

    Current quark mass dependence of nucleon magnetic moments and radii

    Full text link
    A calculation of the current-quark-mass-dependence of nucleon static electromagnetic properties is necessary in order to use observational data as a means to place constraints on the variation of Nature's fundamental parameters. A Poincare' covariant Faddeev equation, which describes baryons as composites of confined-quarks and -nonpointlike-diquarks, is used to calculate this dependence The results indicate that, like observables dependent on the nucleons' magnetic moments, quantities sensitive to their magnetic and charge radii, such as the energy levels and transition frequencies in Hydrogen and Deuterium, might also provide a tool with which to place limits on the allowed variation in Nature's constants.Comment: 23 pages, 2 figures, 4 tables, 4 appendice

    Degradation of structure and properties of rail surface layer at long-term operation

    Get PDF
    The microstructure evolution and properties variation of the surface layer of rail steel after passed 500 and 1000 million tons of gross weight (MTGW) have been investigated. The wear rate increases to 3 and 3.4 times after passed 500 and 1000 MTGW, respectively. The corresponding friction coefficient decreases by 1.4 and 1.1 times. The cementite plates were destroyed and formed the cementite particles of around 10-50 nm in size after passed 500 MTGW. The early stage dynamical recrystallization was observed after passed 1000 MTGW. The mechanisms for these have been suggested. The large number of bend extinction contours is revealed in the surface layer. The internal stress field is evaluated

    Measuring the Hidden Aspects of Solar Magnetism

    Full text link
    2008 marks the 100th anniversary of the discovery of astrophysical magnetic fields, when George Ellery Hale recorded the Zeeman splitting of spectral lines in sunspots. With the introduction of Babcock's photoelectric magnetograph it soon became clear that the Sun's magnetic field outside sunspots is extremely structured. The field strengths that were measured were found to get larger when the spatial resolution was improved. It was therefore necessary to come up with methods to go beyond the spatial resolution limit and diagnose the intrinsic magnetic-field properties without dependence on the quality of the telescope used. The line-ratio technique that was developed in the early 1970s revealed a picture where most flux that we see in magnetograms originates in highly bundled, kG fields with a tiny volume filling factor. This led to interpretations in terms of discrete, strong-field magnetic flux tubes embedded in a rather field-free medium, and a whole industry of flux tube models at increasing levels of sophistication. This magnetic-field paradigm has now been shattered with the advent of high-precision imaging polarimeters that allow us to apply the so-called "Second Solar Spectrum" to diagnose aspects of solar magnetism that have been hidden to Zeeman diagnostics. It is found that the bulk of the photospheric volume is seething with intermediately strong, tangled fields. In the new paradigm the field behaves like a fractal with a high degree of self-similarity, spanning about 8 orders of magnitude in scale size, down to scales of order 10 m.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    NLO QCD Corrections to BcB_c-to-Charmonium Form Factors

    Full text link
    The Bc(1S0)B_c(^1S_0) meson to S-wave Charmonia transition form factors are calculated in next-to-leading order(NLO) accuracy of Quantum Chromodynamics(QCD). Our results indicate that the higher order corrections to these form factors are remarkable, and hence are important to the phenomenological study of the corresponding processes. For the convenience of comparison and use, the relevant expressions in asymptotic form at the limit of mc→0m_c\rightarrow0 for the radiative corrections are presented

    Multi-scale polarisation phenomena

    Get PDF
    Multi-scale methods that separate different time or spatial scales are among the most powerful techniques in physics, especially in applications that study nonlinear systems with noise. When the time scales (noise and perturbation) are of the same order, the scales separation becomes impossible. Thus, the multi-scale approach has to be modified to characterise a variety of noise-induced phenomena. Here, based on stochastic modelling and analytical study, we demonstrate in terms of the fluctuation-induced phenomena and Hurst R/S analysis metrics that the matching scales of random birefringence and pump–signal states of polarisation interaction in a fibre Raman amplifier results in a new random birefringence-mediated phenomenon, which is similar to stochastic anti-resonance. The observed phenomenon, apart from the fundamental interest, provides a base for advancing multi-scale methods with application to different coupled nonlinear systems ranging from lasers (multimode, mode-locked, random, etc.) to nanostructures (light-mediated conformation of molecules and chemical reactions, Brownian motors, etc.)

    Systemic Risk and the Ripple Effect in the Supply Chain

    Get PDF
    Supply chains are highly complex systems, and disruptions may ripple through these systems in unexpected ways, but they may also start in unexpected ways. We investigate the causes of ripple effect through the lens of systemic risk. We derive supply chain systemic risk from the finance discipline where sources of risk are found in systemic risk-taking, contagion, and amplification mechanisms. In a supply chain context, we identify three dimensions that influence systemic risk, the nature of a disruption, the structure, and dependency of the supply chain, and the decision-making. Within these three dimensions, there are several factors including correlation of risk, compounding effects, cyclical linkages, counterparty risk, herding behavior, and misaligned incentives. These factors are often invisible to decision makers, and they may operate in tandem to exacerbate ripple effect. We highlight these systemic risks, and we encourage further research to understand their nature and to mitigate their effect

    Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra

    Full text link
    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, alpha, could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that alpha varies spatially. That is, in one direction on the sky alpha seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger. To continue this study we need accurate laboratory measurements of atomic transition frequencies. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions to the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 A, and require an accuracy of better than 10^{-4} A. We discuss isotope shift measurements that are needed in order to resolve systematic effects in the study. The coefficients of sensitivity to alpha-variation (q) are also presented.Comment: Includes updated version of the "alpha line" lis

    Prevalence of thyroid nodules in an occupationally radiation exposed group: a cross sectional study in an area with mild iodine deficiency

    Get PDF
    BACKGROUND: Thyroid nodules and thyroid cancer occur more frequently in people exposed to radiation for therapeutic purposes, and to nuclear fallout. Furthermore, it is known that a moderate degree of iodine deficiency may be responsible for an increased prevalence of thyroid nodules, while it is suspected that radiation exposure could induce changes in thyroid autoimmunity. The iodine intake of people resident in Bari, S. Italy, is mildly deficient, which could be presumed to cause a higher prevalence of thyroid pathology. This study was conducted to evaluate the prevalence of thyroid nodules in a population occupationally exposed to radiation, in an area of mild iodine deficiency. METHODS: A cross-sectional study was designed to evaluate the prevalence of thyroid nodules in radiation exposed workers, compared with a stratified sample of non exposed workers. After giving written consent to participate in the study, all the recruited subjects (304 exposed and 419 non exposed volunteers) were interviewed to fill in an anamnestic questionnaire, and underwent a physical examination, ultrasound thyroid scan, serum determinations of fT3, fT4 and TSH, fine needle aspiration biopsy. The sample was subdivided into one group exposed to a determined quantity of radiation (detected by counter), one group exposed to an undetectable quantity of radiation, and the non exposed control group. RESULTS: The prevalence of thyroid nodules <1 cm in diameter, defined as incidentalomas, in the exposed group with detected doses, was 11.28% in males and 9.68% in females, while in the exposed group with undetectable dose the prevalence was 10.39% in males and 16.67% in females. In the non exposed group the prevalence of incidentalomas was 9.34% in males and 13.20% in females. These prevalences were not statistically different when analysed by a multiple test comparison with the bootstrap method and stratification for sex. Instead, the prevalence of thyroid nodules > 1 cm in diameter resulted statistically different in exposed and non exposed health staff: 18.68% in non exposed males vs exposed: 3.76% (determined dose) and 9.09% (undetectable dose) in males, and 20.30% in non exposed females versus 3.23% (detected dose) and 9.52% (undetectable dose) in exposed females. There was a higher proportion of healthy staff in the exposed group than in the non exposed: (80.45% vs 68.68% in males; 80.65% vs 57.87% in females). CONCLUSION: In our study, occupational exposure to radiation combined with mild iodine deficiency did not increase the risk of developing thyroid nodules. The statistically significant higher prevalence of thyroid nodules in the non exposed group could be explained by the high percentage (22%) of people with a familial history of, and hence a greater predisposition to, thyroid disease. The endemic condition of mild iodine deficiency, demonstrated in other studies, played a major role in determining the thyroid pathology in our study groups
    • …
    corecore