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Multi-scale polarisation phenomena

Vladimir Kalashnikov1, Sergey V Sergeyev1, Gunnar Jacobsen2, Sergei Popov3 and Sergei K Turitsyn1

Multi-scale methods that separate different time or spatial scales are among the most powerful techniques in physics, especially in

applications that study nonlinear systems with noise. When the time scales (noise and perturbation) are of the same order, the scales

separation becomes impossible. Thus, the multi-scale approach has to be modified to characterise a variety of noise-induced

phenomena. Here, based on stochastic modelling and analytical study, we demonstrate in terms of the fluctuation-induced

phenomena and Hurst R/S analysis metrics that the matching scales of random birefringence and pump–signal states of

polarisation interaction in a fibre Raman amplifier results in a new random birefringence-mediated phenomenon, which is similar

to stochastic anti-resonance. The observed phenomenon, apart from the fundamental interest, provides a base for advancing

multi-scale methods with application to different coupled nonlinear systems ranging from lasers (multimode, mode-locked,

random, etc.) to nanostructures (light-mediated conformation of molecules and chemical reactions, Brownian motors, etc.).
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INTRODUCTION

Many processes in nature have different temporal and spatial scales

that lead to multi-scale complexity. To describe this complexity on

different levels, multi-scale methods have been developed and

explored for more than 100 years1–3. For example, in nonlinear fibre

optics, three groups of scales have 13 orders of magnitude separation

between the smallest length scale of 1.55 mm and the Southern Cross

Cable Network, whose length is approximately 32 500 km. The short-

est micron scale is related to the wavelength of light and the core

diameter. Thus, Maxwell’s equations have to be explored for charac-

terisation of fibre in the dispersion relations context. The next metre

scale corresponds to the fibre beat and correlation lengths, e.g., lengths

at which a state of polarisation (SOP) reproduces itself and preserves

deterministic evolution. The longest kilometre length scale is the fibre

attenuation and gain scale, chromatic dispersion and the Kerr non-

linearity. At this length scale, the Manakov equation is obtained by

averaging the randomly varying birefringence4–6.

To describe the pump and signal SOPs evolution in a fibre Raman

amplifier (FRA), different multi-scale averaging techniques have been

used7–20. Some of them account for the scale of birefringence fluctua-

tions (SBF)7–11, whereas others account for the SBF and the scale

where the pump and signal SOPs interact12–20. All of the averaging

techniques, stochastic modelling, and experimental study demon-

strated polarisation pulling (polarisation trapping) of the signal SOP

to the pump SOP7–11,16–19,21–27.

Along with polarisation pulling, our recent theoretical

study13,14,16,17,19 revealed an additional phenomenon similar to the

fluctuation-induced escape (FIE)28–31, which occurred with an

increased polarisation mode dispersion (PMD) parameter Dp
4–6,32.

The simplest manifestation of this effect, in the form of the res-

onance-like increase of the gain fluctuations as a function of the

PMD parameter, has been first found theoretically by Lin and

Agrawal12 and experimentally by Popov and co-workers24.

Additionally, it has been studied theoretically in detail by Sergeyev

and co-workers13,14,16,17,19.

Modern fibre Raman-based unrepeatered transmission systems use

bidirectional pumping schemes33. The co-propagating pump and sig-

nal provide a major contribution to the pump-to-signal relative

intensity noise (RIN) transfer, which also depends on the PMD

value34. To study the statistical properties of forward pumped FRA

is the key to unlocking the RIN characterisation, which is based on the

vector models of FRA, and, thus, to developing efficient vector RIN

suppression techniques.

To justify application of previously explored multi-scale techniques

for studying statistical properties of co-propagating pump and signal

SOPs, we, for the first time, use computer simulation of stochastic

differential equations with application of the Klöden-Platen-Schurz

algorithm, which provides the fastest convergence (see Supplementary

Information). We reveal both the polarisation pulling and resonance-

like escape from polarisation pulling in terms of fluctuation-induced

phenomena metrics, such as Kramers and intrawell relaxation lengths,

gain, root mean square (RMS) gain fluctuations, as well as the spec-

trum, correlation function, the Hurst parameter and probability dis-

tribution function for projecting the signal SOP to the pump SOP. The

FRA pump–signal SOPs interaction is defined by the rate of relative

rotation of the signal SOP with respect to the pump SOP. According to

the results of our analytical study, the stochastic modelling demon-

strates that for some PMD parameters, which are typical for the
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currently used single mode fibres, this rate is on the same scale as

the birefringence correlation length. Thus, the rate has to be included

in the fast scale group with further averaging to obtain a correct

description in the region of resonance-like escape from the polarisa-

tion pulling.

MATERIALS AND METHODS

Signal and pump states of polarisation evolution in terms of biased

Brownian motion

To provide an insight into the FIE phenomena for the fibre Raman

amplification, we, first, outline similarities between the SOP evolu-

tions in Raman and biased Brownian motion. The FIE from a meta-

stable state of an excitable system with probability controlled by an

external force is a fundamental phenomenon that is inherent in

many physical processes, such as, diffusion in crystals, protein folding,

activated chemical reactions and many others28–31. Figure 1a demon-

strates the escape of the Brownian particle from the bottom of the

potential well due to fluctuations and barrier height modulation.

The potential well DU is a source of polarisation pulling (i.e., ‘polar-

isation trapping’10). For the adiabatic forcing case, specifically, when

the period of barrier modulation T is much longer than the intrawell

relaxation time ti, FIE takes the form of stochastic resonance (SR),

such as, synchronisation between the activated escape events from the

potential minimum with a periodic forcing, which results in the max-

imal signal-to-noise ratio at T 5 tk (tk is the Kramers time, which

characterises the average residence time with respect to the FIE28–31).

The evolution along the fibre length for signal and pump SOP is

similar to the evolution of the Brownian particle in the potential well

(Figure 1a). As follows from Figure 1b, the pump p̂pp~ðp̂1,p̂2,p̂3Þ
and signal ŝs~ð̂s1 ,̂s2 ,̂s3Þ SOPs evolution comprises: (i) signal-to-pump

SOP pulling (i.e., polarisation trapping caused by potential well build-

up)7–11,16–19,21–27 caused by the stimulated Raman scattering aniso-

tropy; (ii) barrier modulation caused by the relative rotation of signal

SOP with respect to the pump SOP at the rate bs 2 bp (bi 5 p/Lbi,

where Lbi is the beat length, i 5 s, p) around the birefringence vector

(BV) Wi 5 (2bicosh, 2bisinh, 0)T, that randomly fluctuates in the

equatorial plane. We assume that the birefringence strength 2bi is fixed

and the orientation angle h is driven by a white-noise process (fixed-

modulus model4–6).

Lh

Lz
~g

h
(z), g

h
(z)h i~0, g

h
(z)g

h
(z’)h i~s2d(z{z’); ð1Þ

where ,…. represents averaging of the birefringence fluctuations

along the fibre, d(z) is the Dirac delta function, and s2 5 1/Lc (Lc is

the birefringence correlation length). As a result of evolution, the

signal wave is amplified and changes its direction as follows:

SS(z)~s0(z ,̂ss(0))Gaveŝs(z), PP(z)~P0(z)p̂pp: ð2Þ

Here, s0 is part of the signal amplitude that is related to the pump

and signal SOPs interaction, Gave~ exp
Ðz
0

gP0(z ’)dz’ 2{asz=

��
is the

averaged Raman gain, g is the Raman gain coefficient, P0 is the pump

power at distance z, P0(z)~Pin exp ({apz); Pin is the input pump

power, as and ap are the signal and pump losses, respectively; L is

the fibre length.

The part of the Raman gain ,G., which is related to the pump–

signal SOPs coupling is

Gh i:10 log
S0(L)h i
S0(0)

�
Gave

� �
~10 log

s0(L)h i
s0(0)

� �
: ð3Þ

We excluded the averaged Raman gain Gave in Equation (3). This

allows us to concentrate on the vector nature of the processes under

consideration. If the input pump and signal SOPs are parallel, the

Raman gain adopts the maximum value, and, if the SOPs are ortho-

gonal, then the Raman gain adopts the minimum value7–27. The gain

difference is referred to as the polarisation-dependent gain (PDG) and

is defined as follows7–27:

PDG:10 log s0, max(L)h i= s0, min(L)h ið Þ: ð4Þ

To quantify de-correlation of the pump and signal SOPs and polar-

isation pulling in terms of the fluctuation-induced phenomena, we

introduce the RMS gain fluctuations as follows12,14:
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Figure 1 (a) Fluctuation-induced phenomena, where the escape probability is controlled by an external periodic force. DU – potential well, T – period of barrier

modulation, r 5 1/tk – escape rate, ti – intrawell relaxation time, tk – residence time (the Kramers time); (b) Evolution of the pump p̂ and signal ŝ states of polarisation

(SOPs) and the local birefringence vector (BV) Wi 5 (2bicosh, 2bisinh,0)T on the Poincaré sphere. Vectors ŝ and p̂ rotate around the local axis W at rates bp and bs,

vector W rotates randomly in the equatorial plane at the rate s 5 Lc
21/2 (Lc is the correlation length). Anisotropy of fibre Raman amplification, which results in the

signal-to-pump SOP polarisation pulling, i.e., builds up a potential well, while relative rotation of the signal SOP, with the rate bp – bs, plays a barrier modulation role, and

the random fluctuation of BV defines the noise.
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s2
G~

s0(L)2
� �

{ s0(L)h i2

s0(L)h i2
: ð5Þ

Thus, we introduced the ,G., PDG, and s2
G metrics to further

justify the different multi-scale techniques7–20 using stochastic mod-

elling.

Vector models of the fibre Raman amplifier and multi-scale

techniques

Here, we present two analytical models (where different averaging

techniques have been used) and stochastic equations to validate these

models. In the first model, the generic multi-scale technique has been

applied, where only the randomly varying birefringence scale has

been considered as the fastest scale4–6. Next, we average the fast

birefringence fluctuations (details are found in the Supplementary

Information) and neglect the pump depletion, cross-phase and self-

phase modulations (XPM and SPM) and time dependence, i.e. group

velocity dispersion (GVD). This approximation is valid for the pump

powers Pin ,1 W, signal powers s0 ,10 mW12,21, Dp. 0.01 ps km21/2

12. It has been estimated12 that the GVD can be neglected when the

fibre length L is much smaller than the dispersion length LD~T 2
p

�
b2j j.

For pulse duration Tp 5 2.5 ps, jb2j5 5 ps2 km22, we have LD. 100

km. Thus, GVD can be neglected for L ,20 km12.

Taking into consideration Equation (2), we obtain the following

equations, which describe the evolution of pump and signal SOPs,

which are related to the pump–signal SOPs coupling:

d sh i
dz

~
g

R

2
P0(z) s0h i p̂h iz bs{bp

� 	
exp {2s2

hz

 � 0

{ s3h i

s2h i

0
BB@

1
CCA,

d p̂h i
dz

~0,

S~sGave ,s~s0 ŝ, ŝj j~1, s0~ sj j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1zs2
2zs2

3

q
, P~P0(z)p̂, p̂j j~1:

ð6Þ

Thus, the multi-scale method includes averaging of the fast birefrin-

gence fluctuations and results in the averaged gain value and in the

absence of pump and signal SOPs correlation. The method neglects

gain fluctuations. Thus, one condition for the validity of the method is

the low gain fluctuations. Equation (6) has been developed using

unitary transformation to exclude the pump SOP fluctuations due

to the random birefringence. The applied transformation preserves

the length of the pump and signal SOP vectors as well as the scalar

and vector products. As a result, evolution of the signal SOP includes a

term (the second one), which accounts for the relative rotation of the

signal SOP with respect to the pump SOP. However, Kozlov and co-

workers7 have applied unitary transformations to the pump and signal

SOPs to exclude both the pump and signal SOP fluctuations due to

random birefringence and, as a result, have obtained equations that

differ from Equation (6) and those derived by Sergeyev and co-work-

ers13. The stimulated Raman scattering and XPM introduce a coupling

between the pump and signal SOPs. Thus, the adopted transforma-

tions7 do not preserve either the vector and scalar lengths or the vector

products.

To justify the multi-scale method that results in Equation (6), we

use stochastic equations derived from the coupled Manakov-PMD

equations to calculate the part of the gain, which is related to the

pump–signal SOPs coupling, gain fluctuations and correlation prop-

erties of signal and pump SOPs (details are found in Supplementary

Information)12:

ds
dz

~
gR

2
P0(z)p̂z

s2

{s1

0

0
B@

1
CAg

h
zbs

0

{s3

s2

0
B@

1
CA,

dp̂
dz

~

p2

{p1

0

0
B@

1
CAg

h
zbp

0

{p3

p2

0
B@

1
CA:

ð7Þ

Here gh is defined in Equation (1). Direct averaging of the randomly

varying birefringence, including the scale of signal and pump waves

interaction, results in the following equations13–20:

d s0h i
dz ’

~e1 exp ({e2z’) xh i, d xh i
dz’

~e1 exp ({e2z’) s0h i{e3 yh i,

d yh i
dz ’

~e3 xh i{ ~̂p1~s1

D Eh i
{

yh iL
2Lc

:

ð8Þ

Here xh i~ ~̂p1~s1z~̂p2~s2z~̂p3~s3

D E
, yh i~ ~̂p3~s2{~̂p2~s3

D E
, z’~z=L,

~̂p1~s1

D E
~~̂p1 0ð Þ~s1 0ð Þ exp {z ’L=Lcð Þ, e1~gPinL=2, e2~asL, e3~

2pL
�

Lbp(ls

�
lp{1)

We also find the RMS gain fluctuations from Equation (5) using the

following equations17:

d s2
0

� �
dz’

~2e1 exp ({e2z’) s0xh i,

d s0xh i
dz’

~e1 exp ({e2z ’) s2
0

D E
z x2
� �� 	

{e3 ys0h i,

d s0yh i
dz’

~e1 exp ({e2z’) xyh ize3 s0xh i{ y2
� �

{ s0h i ~̂p1~s1

D Eh i
{

s0yh iL
2Lc

,

d x2h i
dz ’

~2e1 exp ({e2z’) s0xh i{2e3 xyh i,

d xyh i
dz’

~e1 exp ({e2z’) s0yh ize3 x2
� �

{ xh i ~̂p1~s1

D Eh i
{

xyh iL
2Lc

,

d u2h i
dz’

~
L

Lc
y2
� �

{ u2
� �
 �

,

d y2h i
dz’

~2e3 yxh i{ yh i ~̂p1~s1

D Eh i
{

L

Lc
y2
� �

{ u2
� �
 �

ð9Þ

To justify validity of the multi-scale technique, we calculate gain

ÆGæ, RMS, PDG and correlation between the pump and signal SOPs

by solving Equations (6)–(9).

To quantify polarisation pulling and escape in terms of the FIE

phenomena, we use the previously suggested approach17 to calculate

parameters, which are equivalent to parameters used in the excitable

systems29 models (the Kramers length ,LK. and intrawell relaxation

length ,LR.). First, Equation (8) is simplified as follows:

d x̂h i
dz ’

~e1 exp ({e2z’) 1{ x̂h i2

 �

{e3 ŷh i,

d ŷh i
dz ’

~ e3{e1 exp ({e2z’) ŷh ið Þ x̂h i{ ŷh iL
2Lc

:

ð10Þ

Here, ŷh i~ yh i= s0h i and x̂h i~ xh i= s0h i are the variables that indi-

cate polarisation pulling if x̂h i?1. Escape from the pulling is achieved

if x̂h i?0. For exp {e2z’ð Þ=1, the solutions of Equation (10) x̂0h i, ŷ0

� �
are independent of z9 and, thus, are derived from17:

D2 x̂0h i3zD x̂0h i2z D2
1{D2


 �
x̂0h i{D~0, ŷ0

� �
~

D1 x̂0h i
D x̂0h iz1

: ð11Þ
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Here, D~2Lce1 exp {e2z ’ð Þ=L,D1~2Lce3=L. Using the linear sta-

bility analysis of Equation (10) near x̂0h i, ŷ0

� �
, we find eigenvalues:

L1,2~{
1

4Lc

3Dvx̂0wz1ð Þ

+
1

4Lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zD2

vx̂0w
2{2Dvx̂0w{4D2

1zDD1 ŷ0

� �q
:

ð12Þ

We introduce the intrawell relaxation length LR~1=jRe L1,2ð Þj. If

Im L1,2ð Þ=0, the system escapes by oscillating around the states

x̂0h i, ŷ0

� �
. Thus, we define the Kramers length as LK ~2pL=jIm L1,2ð Þj.

To study the long-range memory effects for the Raman-induced

polarisation pulling and escape, we provide the Hurst rescale range

R/S analysis to obtain the Hurst parameter3,35–46. First, for time series

Xi (i 5 1,2…N) the mean value mN and the cumulative deviate series

CN,k are calculated as follows3:

mN ~
1

N

XN

i~1

Ai, CN ,k~
Xk

i~1

(Xi{mN ), k~1,2:::N : ð13Þ

Next, the range RN and the standard deviation SN are calculated as

RN ~ max CN ,k{ min CN ,k ,SN ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i~1

(Xi{mN )2

vuut : ð14Þ

The rescale range is found as RN/SN. Then, the time series of N

points are divided into two N/2-points time series, and the rescale

range RN/2/SN/2 is calculated for both time series and is, then, averaged.

This process is repeated for partial series which comprise n 5 N/4,

N/8,… points. The Hurst parameter H is estimated by fitting the

power law of averaged Rn/Sn for nR‘, e.g.

Rn=Snh ijn??~CnH : ð15Þ

It has been determined by many authors3,35–46 that the Hurst para-

meter varies as 0 ,H ,1. The parameter 0.5 ,H ,1 is related to the

persistent statistics. Thus, a positive increment in the past makes it

more probable to have a positive trend in the future. This conclusion
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Figure 2 The gain ,G. (part of the Raman gain, which is related to the pump–signal SOPs coupling), which is averaged for 100 stochastic trajectories (solid black

curves), and the corresponding RMS gain fluctuationssG (solid red curve) in comparison with the ,G. (black dashed curves) and RMS gain fluctuations (red dashed

curves) as a function of the PMD parameter Dp. (a) and (b), (c) and (d) plots correspond to the Stokes parameters of the pump and the input signal fields as follows:

p̂ ~ (1,0,0), ŝ ~ (1,0,0) (a); p̂ ~ (1,0,0), ŝ ~ ({1,0,0) (b); p̂ ~ (0,0,1), ŝ ~ (0,0,1) (c); p̂ ~ (0,0,1), ŝ ~ (0,0,{1) (d). Points A, B and C correspond to the signal

beat lengths Lbs of 200, 20 and 10 m, respectively. Inset: ten stochastic trajectories of the signal power s0. The orange dashed curve shows the average values of s0. The

dashed domains demonstrate ranges of the s0 standard deviation. The parameters correspond to point B and p̂ ~(1,0,0), ŝ ~ (1,0,0). The gain ,G. is normalised to

Gave in agreement with Equation (3).
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works in reverse for the anti-persistent statistics. Specifically, a positive

increment in the past will result in a more probable negative trend in

the future. Hurst first suggested an application of the R/S analysis to

study water storage in the Nile River36,37. Since then, the Hurts para-

meter has been proven as a feasible metric for analysing long-range

dependence in network traffic39,40, turbulence41, heartbeat42, coalition

of neurons dynamics43, detection of low observable targets within sea

clutter44, identification and prediction of epileptic seizures, earth-

quakes, and crashes in financial market3,45,46.

RESULTS AND DISCUSSION

Equation (7) have been solved using the Wolfram Mathematica 9.0

computer algebra system using the built-in Klöden–Platen–Schurz

method, which provided the fastest convergence compared with the

Runge–Kutta and Milstein algorithms (see the Supplementary

Information). The averaging procedure was performed for an

ensemble of N 5 100 stochastic trajectories. This provides the pre-

cision of 1/N1/2 , 10%, which is sufficient to justify the analytical

results obtained by Sergeyev and co-workers13–20. We used the follow-

ing parameters: the Raman gain coefficient g was 0.8 W21 km21; the

input signal s0 and the pump Pin powers were 10 mW and 1 W,

respectively; the fibre length L was 5 km; the correlation length of

birefringence vector Lc was 100 m. The Stokes parameters for the

pump and the input signal fields, which correspond to the maximum

and minimum PDG values, were: p̂ ~ (1,0,0), ŝ ~ (1,0,0) for the max-

imum gain and maximum PDG; p̂ ~ (1,0,0), ŝ ~ ({1,0,0) for the

minimum gain and maximum PDG; p̂ ~ (0,0,1), ŝ ~ (0,0,1) for the

maximum gain and minimum PDG; and p̂ ~ (0,0,1), ŝ ~ (0,0,{1)

for the minimum gain and minimum PDG. Based on our previous

publications and on Equations (7), the Poincaré sphere reference

frame is chosen to have a local birefringence as ~Wi,un~(2bi,0,0) for

all stochastic realisations. Thus, all trajectories for the Stokes para-

meter s0 have the same starting point with respect to the chosen ref-

erence frame with further divergence being caused by the random

birefringence fluctuations, as shown in the Figure 2 inset.

The dependences of gain ÆGæ, which, according to Equation (3), is

part of the Raman gain, are related to the pump–signal SOPs coupling

(black solid and dashed curves), and RMS gain fluctuations sG (red

solid and dashed curves) on the PMD parameter are shown in Figure 2.

The solid and dashed curves correspond to the numerical solution of

Equations (7)–(9). Based on Figure 2, the stochastic calculations of the

gain and RMS gain fluctuations, which are derived using Equation (7),

perfectly fit in the whole range of the PMD parameters using results

from our previously developed model, which is based on Equations

(8) and (9)13–20. This is a significant result because it provides analysis

tools for long fibre communication systems without using time-con-

suming calculations, which are based on the solution of the underlying

stochastic equations.

Based on Equation (6), we conclude that in view of the exponential

decay of the term related to escape from polarisation pulling, an

application of the multi-scale technique with averaging, excluding

scale of the pump–signal SOPs interactions, results in polarisation

pulling in all ranges of the PMD parameters. As a result, the gain

values coincide with gain values obtained from Equations (7)–(9)

in the limit of DpR0 and are close to the values for an ideal

Raman polarizer11, by taking into account normalisation of ,G.

to Gave in Equation (3). However, the averaging technique, which

accounts for the signal and pump SOPs interaction13–20 scale, better

agrees with the stochastic modelling results (Figure 2). In addition,

these analytical techniques, which resulted in Equations (8) and (9),

predict a resonant enhancement of the RMS gain fluctuations within

the range of PMD parameters of 1022 to 1021 ps km21/2, which are

typical for the modern single mode fibres (the red dashed curves in

Figure 2 in comparison with the red solid curves, which are obtained

numerically from Equation (7)).

Though the analytic theory predicts a constant asymptotic of

0.34 dB for the PDG parameter (red curve in Figure 3), the numerical

PDG disappears approximately monotonically with PMD (solid

curves in Figure 3), which is in agreement with the Ref. 10 results.

Nevertheless, the averaging of the N 5 100 trajectories provides a

precision D,1/N1/2 of 0.4 dB. Thus, the asymptotic cannot be vali-

dated for the parameters used here.

To characterise the transition from polarisation pulling to escape

from pulling, we determined Kramers and the intrawell relaxation

lengths from Equations (11) and (12) and the Hurst parameter for

the pump-to-signal SOP projection xh i: p̂ . sh i= sj jh i (insets 1 and 2

in Figure 3). As follows from Figure 3 (inset 1), the transition

from polarisation pulling to escape has the threshold at Dp < 0.02

ps km21/2, which, according to Equation (12), corresponds to the

escape rate Im(L1,2)j j§0 for ,x. evolving along the fibre length.

In contrast to our previous results on SR in the fibre Raman amplifica-

tion17, here the escape from polarisation pulling happens in many

uncorrelated steps rather than in one step, as for SR. Therefore, we

have increased gain fluctuations instead of increased the signal-to-

noise ratio, e.g., the stochastic anti-resonance17.

To gain insight into statistical properties of the pump and signal

SOPs interaction, we studied the stochastic evolution of the signal-

to-pump SOP projection xh i: p̂ . sh i= sj jh i along the fibre instead

of the s0 evolution (Figures 4–6). By comparing Figures 3–6 with

Figure 2 (inset) and Equation (8) (first row), we determine that the
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Multi-scale polarisation phenomena
V Kalashnikov et al

5

doi:10.1038/lsa.2016.11 Light: Science & Applications



evolution of ,x. reflects the statistics of SOP interactions by includ-

ing small scales, whereas for s0 the small-scale statistics disappears due

to the propagation distance averaging. The asymptotic behaviour

(DpR0) of ,x. demonstrates the Raman-induced polarisation pull-

ing effect7–11,16–19,21–27, where the Raman amplification plays an

effective fibre polariser role because xh i: p̂ . sh i= sj jh i?1, i.e., the

signal SOP is attracted to the pump SOP (see the top row of

Figure 4 and the black solid curve in Figure 2a). For DpR0, the fibre

becomes effectively ‘isotropic’10. Thus, the Raman amplification

anisotropy results in the strong amplification of the co-polarised to

pump signal SOP and the attenuation of the cross-polarised signal

SOP.

For the initially cross-polarised pump and signal SOPs, this attrac-

tion occurs (the top row of Figure 5) with a lower rate and is initiated

by the birefringence fluctuations due to the escape from the metastable

state with xh i: p̂.sh i= sj jh i?{1. As a result, the average gain ÆGæ
remains minimal for the considered fibre length (Figure 2b and 2d).

An important polarisation pulling property for both considered initial

signal SOPs is minimisation of RMS fluctuations of the average gain

(points A on the red curves in Figure 2a and 2b) and a regular structure

of the spectral energy density (Figure 6a and 6b). This is due to ‘fine

graining’ of the birefringence fluctuations, which play a role of white

noise perturbations around a stable polarisation state (Figure 2a and

2c and the top row in Figure 4), or perturbations pulling out a meta-

stable polarisation state (Figure 2b and 2d and the top row in Figure 5).

The corresponding correlation functions demonstrate a damped oscil-

lation behaviour (insets in Figure 6a and 6b).

The opposite extreme case is Lc..Lb (the large PMD parameters,

i.e., the case of a ‘standard Raman amplifier’10,11), when the determin-

istic evolution, which is induced by the fibre birefringence,
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prevails over the stochastics. In this case, a single mode fibre is similar

to the polarization-maintaining (PM) fibre, which has comparatively

rare stochastic switches of the birefringence axis fluctuations. Thus,

the RMS gain fluctuations decrease (e.g., the points C on the red curves

in Figure 2a and 2b), and ,G. approaches a constant small but non-

zero value (black curves in Figure 2a and 2c). Because the evolution is

driven by the fast pump–signal decorrelation, the average gain is min-

imal (but non-zero) for the initially co-polarised pump and signal.

This means that there is a weak correlation between the pump and

signal SOPs (bottom row in Figure 4).

The decrease of SOP correlation manifests itself in the Hurst para-

meter reduction H ,1 (inset 2 in Figure 3). For the initially cross-

polarised pump and signal SOPs, the residual correlation (bottom row

in Figure 5) maximises the gain ,G. (black curves in Figure 2b and

2d and the bottom row in Figure 5). An oscillatory evolution, which

underlies localisation, along the fibre reveals itself in the modulated

power spectrum densities and the corresponding correlation func-

tions (Figure 6e and 6f).

The intermediate case of Lb<Lc=4 (Dp < 102241021 ps km21/2)

demonstrates a resonant enhancement of polarisation stochastic

evolution, where the RMS gain fluctuations have a set of spikes (in

the vicinity of points B in Figure 2). Such spikes correspond to

enhanced ‘wandering’ of the trajectories for the signal-to-pump

SOP projections ,x. (Figures 4 and 5). In view of the increased rather

than decreased gain fluctuations for point B, this phenomenon is

contrary to the SR28–31 and, thus, is referred to as stochastic anti-

resonance29. The stochasticity intensification is demonstrated by the

threshold-like dropping of the Hurst parameter to H ,0.7 and the

corresponding collapse of the Kramers length (insets in Figure 3). This

switching between the statistical scenarios is the distinguishing char-

acteristic of the ‘stochastic anti-resonance’ under consideration. The

average polarisation state remains ‘localised’ (the middle rows of

–0.8

–0.9

–.1
0 1 2 3 4 Z, km

0 1 2 3 4 Z, km

0 1 2 3 4 Z, km

〈x
〉

〈x
〉

〈x
〉

〈x〉

〈x〉

〈x〉

0.5

0

–0.5

–1

0.5

–0.5

–1

C
ou

nt
s

C
ou

nt
s

C
ou

nt
s

2 × 104

1 × 104

1.5 × 105

1.0 × 105

5.0 × 104

0.0

800

600

400

200

0

–1.00 –0.95 –0.90 –0.85

–0.9 –0.6 –0.3 0.0 0.3

–0.9 –0.6 –0.3 0.0 0.3

a

b

c
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Figures 4–5) but its sensitivity to the input SOP disappears with the

PMD parameter growth (Figure 3). This means that the PDG

decreases with Dp (solid lines in Figure 3). Therefore, the Raman gain

in the vicinity of the standard deviation peak behaves as an ‘effective

depolariser’, which diminishes the PDG.

CONCLUSIONS

In summary, using stochastic modelling, we provided insights into

multi-scale polarisation phenomena for the FRA as a function of its

birefringence properties (PMD parameter). We demonstrated that for

the low PMD values the fibre become almost isotropic. Thus, the

Raman amplification anisotropy leads to polarisation pulling when

the signal SOP is attracted to the pump SOP7–11,16–19,21–27. Therefore,

the length of the pump-to-signal SOP interaction (beat length of the

relative rotation of the pump SOP with respect to the signal SOP) is

much longer than the birefringence correlation length. Thus, aver-

aging over the correlation length scale using the generic multi-scale

technique4–6 leads to the results that are close to those obtained using

stochastic modelling (Figures 2 and 3). Due to the decreased inter-

action length (increase in PMD), deterministic rotation of the signal

SOP with respect to the pump SOP is intensified and results in escape

phenomena, which is similar to stochastic anti-resonance, in view of

the increased RMS gain fluctuations (Figure 2). When the rotation rate

approaches the correlation length, the scale averaging of the correla-

tion length is no longer valid and cannot provide correct results for the

gain (Figure 2). Only by including the scale of the signal-to-pump

SOPs interactions, we demonstrate that it is possible to obtain the

correct results (Figures 2 and 3). A further decrease of the interaction

length corresponds to an almost deterministic birefringence case,

where the pump and signal SOPs rotate without interaction

(Figure 2). Detailed statistical analysis of the pump-to-signal SOP

projection evolution along the fibre unveiled different types of frac-

tional Brownian motions as a function of PMD values in terms of the

Hurst parameter H. For the low PMD values, the polarisation pulling

leads to HR1, which corresponds to the persistent statistics. For the

PMD values that correspond to the gain fluctuations maximum,

the Hurst parameter decreases to H 5 0.7 and, therefore, approaches

the Brownian motion with H 5 0.5. Further increase in the PMD

parameter corresponds to the almost deterministic SOPs evolution

and, thus, the persistent statistics with HR0.8.

The obtained results are further generalised by accounting for the

pump depletion, XPM and SPM, and time dependence (GVD and
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walk-off between the pump and signal waves). This manipulation

provides an opportunity to gain insight into the RIN33 and extreme

statistics in the FRAs47 as a function of the PMD parameters and to

adapt the developed methods to characterise the parametric48 and

Brillouin49 amplifiers. Additionally, these results can be applied, in

the context of new multi-scale methods development, to study the

complex nonlinear coupled systems, such as lasers (multimode,

mode-locked, random)50–52, nanostructures (light-mediated con-

formation of molecules and chemical reactions, Brownian motors53),

and other systems39–46.
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7 Kozlov VV, Nuño J, Ania-Castañón JD, Wabnitz S. Theory of fiber optic Raman
polarizers. Opt Lett 2010; 35: 3970–3972.
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