12 research outputs found
Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes.
Abstract
BACKGROUND:
The cardiovascular effects of adding once-weekly treatment with exenatide to usual care in patients with type 2 diabetes are unknown.
METHODS:
We randomly assigned patients with type 2 diabetes, with or without previous cardiovascular disease, to receive subcutaneous injections of extended-release exenatide at a dose of 2 mg or matching placebo once weekly. The primary composite outcome was the first occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. The coprimary hypotheses were that exenatide, administered once weekly, would be noninferior to placebo with respect to safety and superior to placebo with respect to efficacy.
RESULTS:
In all, 14,752 patients (of whom 10,782 [73.1%] had previous cardiovascular disease) were followed for a median of 3.2 years (interquartile range, 2.2 to 4.4). A primary composite outcome event occurred in 839 of 7356 patients (11.4%; 3.7 events per 100 person-years) in the exenatide group and in 905 of 7396 patients (12.2%; 4.0 events per 100 person-years) in the placebo group (hazard ratio, 0.91; 95% confidence interval [CI], 0.83 to 1.00), with the intention-to-treat analysis indicating that exenatide, administered once weekly, was noninferior to placebo with respect to safety (P<0.001 for noninferiority) but was not superior to placebo with respect to efficacy (P=0.06 for superiority). The rates of death from cardiovascular causes, fatal or nonfatal myocardial infarction, fatal or nonfatal stroke, hospitalization for heart failure, and hospitalization for acute coronary syndrome, and the incidence of acute pancreatitis, pancreatic cancer, medullary thyroid carcinoma, and serious adverse events did not differ significantly between the two groups.
CONCLUSIONS:
Among patients with type 2 diabetes with or without previous cardiovascular disease, the incidence of major adverse cardiovascular events did not differ significantly between patients who received exenatide and those who received placebo. (Funded by Amylin Pharmaceuticals; EXSCEL ClinicalTrials.gov number, NCT01144338 .)
Morphologically and Functionally Distinct Lipid Droplet Subpopulations
Lipid droplet (LD), a multi-functional organelle, is often found to associate with other cellular membranous structures and vary in size in a given cell, which may be related to their functional diversity. Here we established a method to separate LD subpopulations from isolated CHO K2 LDs into three different size categories. The subpopulation with smallest LDs was nearly free of ER and other membranous structures while those with larger LDs contained intact ER. These distinct subpopulations of LDs differed in their protein composition and ability to recruit proteins. This method was also applicable to LDs obtained from other sources, such as Huh7 cells, mouse liver and brown adipose tissue, et al. We developed an in vitro assay requiring only isolated LDs, Coenzyme A, and ATP to drive lipid synthesis. The LD subpopulation nearly depleted of ER was able to incorporate fatty acids into triacylglycerol and phospholipids. Together, our data demonstrate that LDs in a given cell are heterogeneous in size and function, and suggest that LDs are one of cellular lipid synthetic organelles
Plin2 Inhibits Cellular Glucose Uptake through Interactions with SNAP23, a SNARE Complex Protein
Although a link between excess lipid storage and aberrant glucose metabolism has been recognized for many years, little is known what role lipid storage droplets and associated proteins such as Plin2 play in managing cellular glucose levels. To address this issue, the influence of Plin2 on glucose uptake was examined using 2-NBD-Glucose and [(3)H]-2-deoxyglucose to show that insulin-mediated glucose uptake was decreased 1.7- and 1.8-fold, respectively in L cell fibroblasts overexpressing Plin2. Conversely, suppression of Plin2 levels by RNAi-mediated knockdown increased 2-NBD-Glucose uptake several fold in transfected L cells and differentiated 3T3-L1 cells. The effect of Plin2 expression on proteins involved in glucose uptake and transport was also examined. Expression of the SNARE protein SNAP23 was increased 1.6-fold while levels of syntaxin-5 were decreased 1.7-fold in Plin2 overexpression cells with no significant changes observed in lipid droplet associated proteins Plin1 or FSP27 or with the insulin receptor, GLUT1, or VAMP4. FRET experiments revealed a close proximity of Plin2 to SNAP23 on lipid droplets to within an intramolecular distance of 51 Ă…. The extent of targeting of SNAP23 to lipid droplets was determined by co-localization and co-immunoprecipitation experiments to show increased partitioning of SNAP23 to lipid droplets when Plin2 was overexpressed. Taken together, these results suggest that Plin2 inhibits glucose uptake by interacting with, and regulating cellular targeting of SNAP23 to lipid droplets. In summary, the current study for the first time provides direct evidence for the role of Plin2 in mediating cellular glucose uptake
Newborn screening for inborn errors of metabolism and endocrinopathies: an update
Newborn screening for inborn errors of metabolism and endocrinopathies has expanded during the last two decades, mainly owing to the introduction of new technologies such as tandem mass spectrometry and DNA analysis. However, every expansion of the screening panel requires critical review, discussion, and pilot studies. Different legal regulations and ethical concerns may lead to different decisions. Without claiming to be comprehensive, this review tries to give an overview of newborn screening, including its main problems and target diseases
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes
International audienceMembrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semiautonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show Josselin Lupette and Eric Maréchal contributed equally with all other contributors