11 research outputs found
Restrictions and extensions of semibounded operators
We study restriction and extension theory for semibounded Hermitian operators
in the Hardy space of analytic functions on the disk D. Starting with the
operator zd/dz, we show that, for every choice of a closed subset F in T=bd(D)
of measure zero, there is a densely defined Hermitian restriction of zd/dz
corresponding to boundary functions vanishing on F. For every such restriction
operator, we classify all its selfadjoint extension, and for each we present a
complete spectral picture.
We prove that different sets F with the same cardinality can lead to quite
different boundary-value problems, inequivalent selfadjoint extension
operators, and quite different spectral configurations. As a tool in our
analysis, we prove that the von Neumann deficiency spaces, for a fixed set F,
have a natural presentation as reproducing kernel Hilbert spaces, with a
Hurwitz zeta-function, restricted to FxF, as reproducing kernel.Comment: 63 pages, 11 figure
Black Holes in Higher Dimensions
We review black hole solutions of higher-dimensional vacuum gravity, and of
higher-dimensional supergravity theories. The discussion of vacuum gravity is
pedagogical, with detailed reviews of Myers-Perry solutions, black rings, and
solution-generating techniques. We discuss black hole solutions of maximal
supergravity theories, including black holes in anti-de Sitter space. General
results and open problems are discussed throughout.Comment: 76 pages, 14 figures; review article for Living Reviews in
Relativity. v2: some improvements and refs adde
Brane effective actions, kappa-symmetry and applications
This is a review on brane effective actions, their symmetries and some of their applications. Its first part covers the GreenâSchwarz formulation of single M- and D-brane effective actions focusing on kinematical aspects: the identification of their degrees of freedom, the importance of world volume diffeomorphisms and kappa symmetry to achieve manifest spacetime covariance and supersymmetry, and the explicit construction of such actions in arbitrary on-shell supergravity backgrounds. Its second part deals with applications. First, the use of kappa symmetry to determine supersymmetric world volume solitons. This includes their explicit construction in flat and curved backgrounds, their interpretation as BogomolânyiâPrasadâSommerfield (BPS) states carrying (topological) charges in the supersymmetry algebra and the connection between supersymmetry and Hamiltonian BPS bounds. When available, I emphasise the use of these solitons as constituents in microscopic models of black holes. Second, the use of probe approximations to infer about the non-trivial dynamics of strongly-coupled gauge theories using the anti de Sitter/conformal field theory (AdS/CFT) correspondence. This includes expectation values of Wilson loop operators, spectrum information and the general use of D-brane probes to approximate the dynamics of systems with small number of degrees of freedom interacting with larger systems allowing a dual gravitational description. Its final part briefly discusses effective actions for N D-branes and M2-branes. This includes both Super-Yang-Mills theories, their higher-order corrections and partial results in covariantising these couplings to curved backgrounds, and the more recent supersymmetric ChernâSimons matter theories describing M2-branes using field theory, brane constructions and 3-algebra considerations