7 research outputs found

    A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea

    Get PDF
    A combinatorial approach of candidate gene-based association analysis and genome-wide association study (GWAS) integrated with QTL mapping, differential gene expression profiling and molecular haplotyping was deployed in the present study for quantitative dissection of complex flowering time trait in chickpea. Candidate gene-based association mapping in a flowering time association panel (92 diverse desi and kabuli accessions) was performed by employing the genotyping information of 5724 SNPs discovered from 82 known flowering chickpea gene orthologs of Arabidopsis and legumes as well as 832 gene-encoding transcripts that are differentially expressed during flower development in chickpea. GWAS using both genome-wide GBS- and candidate gene-based genotyping data of 30,129 SNPs in a structured population of 92 sequenced accessions (with 200–250 kb LD decay) detected eight maximum effect genomic SNP loci (genes) associated (34 % combined PVE) with flowering time. Six flowering time-associated major genomic loci harbouring five robust QTLs mapped on a high-resolution intra-specific genetic linkage map were validated (11.6–27.3 % PVE at 5.4–11.7 LOD) further by traditional QTL mapping. The flower-specific expression, including differential up- and down-regulation (>three folds) of eight flowering time-associated genes (including six genes validated by QTL mapping) especially in early flowering than late flowering contrasting chickpea accessions/mapping individuals during flower development was evident. The gene haplotype-based LD mapping discovered diverse novel natural allelic variants and haplotypes in eight genes with high trait association potential (41 % combined PVE) for flowering time differentiation in cultivated and wild chickpea. Taken together, eight potential known/candidate flowering time-regulating genes [efl1 (early flowering 1), FLD (Flowering locus D), GI (GIGANTEA), Myb (Myeloblastosis), SFH3 (SEC14-like 3), bZIP (basic-leucine zipper), bHLH (basic helix-loop-helix) and SBP (SQUAMOSA promoter binding protein)], including novel markers, QTLs, alleles and haplotypes delineated by aforesaid genome-wide integrated approach have potential for marker-assisted genetic improvement and unravelling the domestication pattern of flowering time in chickpea

    Not Available

    No full text
    Not AvailableIn the present study, cytogenetic and molecular characterization of four ornamental marine fish species, namely Chaetodon collare, Plectorhinchus gibbosus, Scarus ghobban and Siganus canaliculatus inhabiting Arabian Sea, were carried out. Karyotype analyses of these species revealed diploid chromosome number 48 with all acrocentric, except in S. ghobban having karyotypic formula of 10m+4sm+12st+22t. Chromosomal configuration of C. collare, P. gibbosus and S. canaliculatus indicated more or less similar genetic makeup among them, than that of S. ghobban. Analyses of ITS 2 region in these species indicated phylogenetic closeness of P. gibbosus with S. ghobban and C. collare with S. canaliculatus with an average evolutionary divergence of 6.8% among them.Not Availabl

    Rice Improvement Through Genome-Based Functional Analysis and Molecular Breeding in India

    No full text
    corecore