155 research outputs found

    An IFN-Ξ³-IL-18 Signaling Loop Accelerates Memory CD8+ T Cell Proliferation

    Get PDF
    Rapid proliferation is one of the important features of memory CD8+ T cells, ensuring rapid clearance of reinfection. Although several cytokines such as IL-15 and IL-7 regulate relatively slow homeostatic proliferation of memory T cells during the maintenance phase, it is unknown how memory T cells can proliferate more quickly than naΓ―ve T cells upon antigen stimulation. To examine antigen-specific CD8+ T cell proliferation in recall responses in vivo, we targeted a model antigen, ovalbumin(OVA), to DEC-205+ dendritic cells (DCs) with a CD40 maturation stimulus. This led to the induction of functional memory CD8+ T cells, which showed rapid proliferation and multiple cytokine production (IFN-Ξ³, IL-2, TNF-Ξ±) during the secondary challenge to DC-targeted antigen. Upon antigen-presentation, IL-18, an IFN-Ξ³-inducing factor, accumulated at the DC:T cell synapse. Surprisingly, IFN-Ξ³ receptors were required to augment IL-18 production from DCs. Mice genetically deficient for IL-18 or IFN-Ξ³-receptor 1 also showed delayed expansion of memory CD8+ T cells in vivo. These results indicate that a positive regulatory loop involving IFN-Ξ³ and IL-18 signaling contributes to the accelerated memory CD8+ T cell proliferation during a recall response to antigen presented by DCs

    Increased Memory Conversion of NaΓ―ve CD8 T Cells Activated during Late Phases of Acute Virus Infection Due to Decreased Cumulative Antigen Exposure

    Get PDF
    Background: Memory CD8 T cells form an essential part of protective immunity against viral infections. Antigenic load, costimulation, CD4-help, cytokines and chemokines fluctuate during the course of an antiviral immune response thus affecting CD8 T cell activation and memory conversion. Methodology/Principal Findings: In the present study, naΓ―ve TCR transgenic LCMV-specific P14 CD8 T cells engaged at a late stage during the acute antiviral LCMV response showed reduced expansion kinetics but greater memory conversion in the spleen. Such late activated cells displayed a memory precursor effector phenotype already at the peak of the systemic antiviral response, suggesting that the environment determined their fate during antigen encounter. In the spleen, the majority of late transferred cells exhibited a central memory phenotype compared to the effector memory displayed by the early transferred cells. Increasing the inflammatory response by exogenous administration of IFNc, PolyI:C or CpG did not affect memory conversion in the late transferred group, suggesting that the diverging antigen load early versus later during acute infection had determined their fate. In agreement, reduction in the LCMV antigenic load after ribavirin treatment enhanced the contribution of early transferred cells to the long lasting memory pool. Conclusions/Significance: Our results show that naΓ―ve CD8 cells, exposed to reduced duration or concentration of antigen during viral infection convert into memory more efficiently, an observation that could have significant implications fo

    Stochastic Models of Lymphocyte Proliferation and Death

    Get PDF
    Quantitative understanding of the kinetics of lymphocyte proliferation and death upon activation with an antigen is crucial for elucidating factors determining the magnitude, duration and efficiency of the immune response. Recent advances in quantitative experimental techniques, in particular intracellular labeling and multi-channel flow cytometry, allow one to measure the population structure of proliferating and dying lymphocytes for several generations with high precision. These new experimental techniques require novel quantitative methods of analysis. We review several recent mathematical approaches used to describe and analyze cell proliferation data. Using a rigorous mathematical framework, we show that two commonly used models that are based on the theories of age-structured cell populations and of branching processes, are mathematically identical. We provide several simple analytical solutions for a model in which the distribution of inter-division times follows a gamma distribution and show that this model can fit both simulated and experimental data. We also show that the estimates of some critical kinetic parameters, such as the average inter-division time, obtained by fitting models to data may depend on the assumed distribution of inter-division times, highlighting the challenges in quantitative understanding of cell kinetics

    B7-H1 Blockade Increases Survival of Dysfunctional CD8+ T Cells and Confers Protection against Leishmania donovani Infections

    Get PDF
    Experimental visceral leishmaniasis (VL) represents an exquisite model to study CD8+ T cell responses in a context of chronic inflammation and antigen persistence, since it is characterized by chronic infection in the spleen and CD8+ T cells are required for the development of protective immunity. However, antigen-specific CD8+ T cell responses in VL have so far not been studied, due to the absence of any defined Leishmania-specific CD8+ T cell epitopes. In this study, transgenic Leishmania donovani parasites expressing ovalbumin were used to characterize the development, function, and fate of Leishmania-specific CD8+ T cell responses. Here we show that L. donovani parasites evade CD8+ T cell responses by limiting their expansion and inducing functional exhaustion and cell death. Dysfunctional CD8+ T cells could be partially rescued by in vivo B7-H1 blockade, which increased CD8+ T cell survival but failed to restore cytokine production. Nevertheless, B7-H1 blockade significantly reduced the splenic parasite burden. These findings could be exploited for the design of new strategies for immunotherapeutic interventions against VL

    Epitope Density Influences CD8+ Memory T Cell Differentiation

    Get PDF
    The generation of long-lived memory T cells is critical for successful vaccination but the factors controlling their differentiation are still poorly defined. We tested the hypothesis that the strength of T cell receptor (TCR) signaling contributed to memory CD8(+) T cell generation.We manipulated the density of antigenic epitope presented by dendritic cells to mouse naΓ―ve CD8(+) T cells, without varying TCR affinity. Our results show that a two-fold decrease in antigen dose selectively affects memory CD8(+) T cell generation without influencing T cell expansion and acquisition of effector functions. Moreover, we show that low antigen dose alters the duration of the interaction between T cells and dendritic cells and finely tunes the expression level of the transcription factors Eomes and Bcl6. Furthermore, we demonstrate that priming with higher epitope density results in a 2-fold decrease in the expression of Neuron-derived orphan nuclear receptor 1 (Nor-1) and this correlates with a lower level of conversion of Bcl-2 into a pro-apoptotic molecule and an increased number of memory T cells.Our results show that the amount of antigen encountered by naΓ―ve CD8(+) T cells following immunization with dendritic cells does not influence the generation of functional effector CD8(+) T cells but rather the number of CD8(+) memory T cells that persist in the host. Our data support a model where antigenic epitope density sensed by CD8(+) T cells at priming influences memory generation by modulating Bcl6, Eomes and Nor-1 expression

    Dynamic Imaging of the Effector Immune Response to Listeria Infection In Vivo

    Get PDF
    Host defense against the intracellular pathogen Listeria monocytogenes (Lm) requires innate and adaptive immunity. Here, we directly imaged immune cell dynamics at Lm foci established by dendritic cells in the subcapsular red pulp (scDC) using intravital microscopy. Blood borne Lm rapidly associated with scDC. Myelomonocytic cells (MMC) swarmed around non-motile scDC forming foci from which blood flow was excluded. The depletion of scDC after foci were established resulted in a 10-fold reduction in viable Lm, while graded depletion of MMC resulted in 30–1000 fold increase in viable Lm in foci with enhanced blood flow. Effector CD8+ [CD8 superscript +] T cells at sites of infection displayed a two-tiered reduction in motility with antigen independent and antigen dependent components, including stable interactions with infected and non-infected scDC. Thus, swarming MMC contribute to control of Lm prior to development of T cell immunity by direct killing and sequestration from blood flow, while scDC appear to promote Lm survival while preferentially interacting with CD8+ [CD8 superscript +] T cells in effector sites.National Institutes of Health (U.S.) (Grant P01AI-071195

    A Gamma Interferon Independent Mechanism of CD4 T Cell Mediated Control of M. tuberculosis Infection in vivo

    Get PDF
    CD4 T cell deficiency or defective IFNΞ³ signaling render humans and mice highly susceptible to Mycobacterium tuberculosis (Mtb) infection. The prevailing model is that Th1 CD4 T cells produce IFNΞ³ to activate bactericidal effector mechanisms of infected macrophages. Here we test this model by directly interrogating the effector functions of Th1 CD4 T cells required to control Mtb in vivo. While Th1 CD4 T cells specific for the Mtb antigen ESAT-6 restrict in vivo Mtb growth, this inhibition is independent of IFNΞ³ or TNF and does not require the perforin or FAS effector pathways. Adoptive transfer of Th17 CD4 T cells specific for ESAT-6 partially inhibited Mtb growth while Th2 CD4 T cells were largely ineffective. These results imply a previously unrecognized IFNΞ³/TNF independent pathway that efficiently controls Mtb and suggest that optimization of this alternative effector function may provide new therapeutic avenues to combat Mtb through vaccination

    Detection of Intra-Tumor Self Antigen Recognition during Melanoma Tumor Progression in Mice Using Advanced Multimode Confocal/Two Photon Microscope

    Get PDF
    Determining how tumor immunity is regulated requires understanding the extent to which the anti-tumor immune response β€œfunctions” in vivo without therapeutic intervention. To better understand this question, we developed advanced multimodal reflectance confocal/two photon fluorescence intra-vital imaging techniques to use in combination with traditional ex vivo analysis of tumor specific T cells. By transferring small numbers of melanoma-specific CD8+ T cells (Pmel-1), in an attempt to mimic physiologic conditions, we found that B16 tumor growth alone was sufficient to induce naive Pmel-1 T cell proliferation and acquisition of effector phenotype. Tumor -primed Pmel-1 T cells, are capable of killing target cells in the periphery and secrete IFNΞ³, but are unable to mediate tumor regression. Within the tumor, Pmel-1 T cells have highly confined mobility, displaying long term interactions with tumor cells. In contrast, adoptively transferred non tumor-specific OT-I T cells show neither confined mobility, nor long term interaction with B16 tumor cells, suggesting that intra-tumor recognition of cognate self antigen by Pmel-1 T cells occurs during tumor growth. Together, these data indicate that lack of anti-tumor efficacy is not solely due to ignorance of self antigen in the tumor microenvironment but rather to active immunosuppressive influences preventing a protective immune response

    Dissociating Markers of Senescence and Protective Ability in Memory T Cells

    Get PDF
    No unique transcription factor or biomarker has been identified to reliably distinguish effector from memory T cells. Instead a set of surface markers including IL-7RΞ± and KLRG1 is commonly used to predict the potential of CD8 effector T cells to differentiate into memory cells. Similarly, these surface markers together with the tumor necrosis factor family member CD27 are frequently used to predict a memory T cell's ability to mount a recall response. Expression of these markers changes every time a memory cell is stimulated and repeated stimulation can lead to T cell senescence and loss of memory T cell responsiveness. This is a concern for prime–boost vaccine strategies which repeatedly stimulate T cells with the aim of increasing memory T cell frequency. The molecular cues that cause senescence are still unknown, but cell division history is likely to play a major role. We sought to dissect the roles of inflammation and cell division history in developing T cell senescence and their impact on the expression pattern of commonly used markers of senescence. We developed a system that allows priming of CD8 T cells with minimal inflammation and without acquisition of maximal effector function, such as granzyme expression, but a cell division history similar to priming with systemic inflammation. Memory cells derived from minimal effector T cells are fully functional upon rechallenge, have full access to non-lymphoid tissue and appear to be less senescent by phenotype upon rechallenge. However, we report here that these currently used biomarkers to measure senescence do not predict proliferative potential or protective ability, but merely reflect initial priming conditions

    Microneedle Array Design Determines the Induction of Protective Memory CD8+ T Cell Responses Induced by a Recombinant Live Malaria Vaccine in Mice

    Get PDF
    BACKGROUND: Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8(+) T cell responses to a malaria antigen induced by a live vaccine. METHODOLOGY AND FINDINGS: Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8(+) T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction of T cell responses by live vaccines aids the development of solutions to current obstacles of immunization programmes
    • …
    corecore