26,842 research outputs found
Meeting the millennium development goal in education : a cost-effectiveness analysis for Ecuador
Ecuador;education;development strategy;input output analysis;primary education;secondary education
Limits on Lorentz violation from charged-pion decay
Charged-pion decay offers many opportunities to study Lorentz violation.
Using an effective field theory approach, we study Lorentz violation in the
lepton, W-boson, and quark sectors and derive the differential pion-decay rate,
including muon polarization. Using coordinate redefinitions we are able to
relate the first-generation quark sector, in which no bounds were previously
reported, to the lepton and W-boson sector. This facilitates a tractable
calculation, enabling us to place bounds on the level of on
first-generation quark parameters. Our expression for the pion-decay rate can
be used to constrain Lorentz violation in future experiments.Comment: 12 pages, 1 figure, Accepted for publication in Phys. Rev.
Development in a biologically inspired spinal neural network for movement control
In two phases, we develop neural network models of spinal circuitry which self-organises into networks with opponent channels for the control of an antagonistic muscle pair. The self-organisation is enabled by spontaneous activity present in the spinal cord. We show that after the process of self-organisation, the networks have developed the possibility to independently control the length and tension of the innerated muscles. This allows the specification of joint angle independent from the specification of joint stiffness. The first network comprises only motorneurons and inhibitory interneurons through which the two channels interact. The inhibitory interneurons prevent saturation of the motorneuron pools, which is a necessary condition for independent control. In the second network, however, the neurons in the motorneuron pools obey the size-principle, which is a threat to the desired invariance of joint angle for varying joint stiffness, because of the different amplification of inputs in the case these inputs are not equal. To restore the desired invariance the second network ha.s been expanded with Renshaw cells. The manner in which they are included in the circuitry corrects the problem caused by the addition of the size-principle. The results obtained from the two models compare favourably with the FLETE-model for spinal circuitry (Bullock & Grossberg, 1991; Bullock et al., HJ93; Bullock & Contreras-Vidal, 1993) which has been successful in explaining several phenomena related to motor control.Fulbright Scholarship; Office of Naval Research (N00014-92-J-1309, N00014-95-1-0409
Plant Metabolomics Applications in the Brassicaceae: Added Value for Science and Industry
Crops from the family Brassicaceae represent a diverse and very interesting group of plants. In addition, their close relationship with the model plant, Arabidopsis thaliana, makes combined research on these species both scientifically valuable and of considerable commercial importance. In the post-genomics era, much effort is being placed on expanding our capacity to use advanced technologies such as proteomics and metabolomics, to broaden our knowledge of the molecular organization of plants and how genetic differences are translated into phenotypic ones. Metabolomics in particular is gaining much attention mainly due both to the comprehensiveness of the technology and also the potentially close relationship between biochemical composition (including human health-related phytochemicals) and phenotype. In this short review, a brief introduction to the main metabolomics technologies is given taking examples from research on the Brassicaceae for illustratio
CLIC Background Studies and optimization of the innermost tracker elements
The harsh machine background at the Compact Linear Collider (CLIC) forms a
strong constraint on the design of the innermost part of the tracker. For the
CLIC Conceptual Design Report, the detector concepts developed for the
International Linear Collider (ILC) were adapted to the CLIC environment. We
present the new layout for the Vertex Detector and the Forward Tracking Disks
of the CLIC detector concepts, as well as the background levels in these
detectors. We also study the dependence of the background rates on technology
parameters like thickness of the active layer and detection threshold.Comment: 7 pages, 5 figures, LCWS 201
Development of solution techniques for nonlinear structural analysis
Nonlinear structural solution methods in the current research literature are classified according to order of the solution scheme, and it is shown that the analytical tools for these methods are uniformly derivable by perturbation techniques. A new perturbation formulation is developed for treating an arbitrary nonlinear material, in terms of a finite-difference generated stress-strain expansion. Nonlinear geometric effects are included in an explicit manner by appropriate definition of an applicable strain tensor. A new finite-element pilot computer program PANES (Program for Analysis of Nonlinear Equilibrium and Stability) is presented for treatment of problems involving material and geometric nonlinearities, as well as certain forms on nonconservative loading
INPUTB: A thermal/structural data interface program for 2-dimensional and 3-dimensional interpolation
A computer program (INPUTB) for interpolation in both space and time, and based on a linear interpolation scheme using simplex spatial regions is described. The program was developed to provide data interfacing between the output from thermal analyzers and the input to the BOPACE 3-D program. The INPUTB interpolator is of a general nature and could be used for other tasks. The INPUTB program utilizes temperature values which are given at some sequence of time for a list of strategically located thermal nodes. It operates on these values by performing a double interpolation to provide temperature values at another desired sequence of times for a list of structural nodes
- …