1,409 research outputs found

    Developing Technological Pedagogical Content Knowledge in pre-service science teachers: Support from blended learning

    Get PDF
    The Technological Pedagogical Content Knowledge (TPACK) framework has been used to prepare pre-service science teachers at the Public Authority of Applied Education and Training in Kuwait for ICT integration in education. Pre-service teachers worked in teams to design an ICT solution for an authentic problem they faced during in-school training. Pre-service teachers were separated into two groups. The first group was coached by ICT, pedagogy, and content experts. The second group was offered a blended condition, by which they had access to an online portal with different tutorials and examples, with opportunities to meet with different experts whenever they wanted. Pre-test and post-test design data were collected for attitudes toward ICT, ICT skills, and TPACK. The findings show that the self-reported TPACK, the score of attitudes toward ICT, and ICT skills increased in both groups. However, the blended support condition reported a higher increase in the participants' technological knowledge (TK), technological pedagogical knowledge (TPK), their attitude toward ICT as a tool for instruction and productivity, and ICT enjoyment. This indicated that students perceived the blended condition for supporting design teams as a more desirable method for enhancing their development of TPACK

    Modeling scenarios for water allocation in the Gediz Basin, Turkey

    Get PDF
    Water management / Water allocation / Models / River basin development / Hydrology / Decision making / Environmental effects / Water use efficiency / Climate / Irrigation water / Irrigated farming / Stream flow / Surface water / Salt water intrusion / Turkey / Gediz Basin

    Design research in early literacy within the zone of proximal implementation

    Get PDF
    Despite intentions to the contrary, insights on pedagogically appropriate innovations with representative teachers in everyday school settings are severely limited. In part, this is because (design) research is often conducted at the bleeding edge of what is possible, exploring innovative uses of new technologies and/or emerging theories, while insufficient research and development work focuses on what is practical, today. This leaves a problematic gap between what could be useful research in theory, and what can be useful research in practice. This paper calls for (design) researchers to attend to factors that determine if and how innovations are understood, adopted and used by teachers and schools, and gives one example of how this was tackled in the domain of early literacy. Across ten studies, researchers collected data that helped shape an intervention that can be implemented by representative teachers, for diverse learners, in varied school settings

    Consistency between hydrological model, large aperture scintillometer and remote sensing based evapotranspiration estimates for a heterogeneous catchment

    Get PDF
    The catchment averaged actual evapotranspiration rate is a hydrologic model variable that is difficult to quantify. Evapotranspiration rates - up till present - cannot be continuously observed at the catchment scale. The objective of this paper is to estimate the evapotranspiration rates (or its energy equivalent, the latent heat fluxes LE) for a heterogeneous catchment of 102.3 km(2) in Belgium using three fundamentally different algorithms. One possible manner to observe this variable could be the continuous measurement of sensible heat fluxes (H) across large distances (in the order of kilometers) using a large aperture scintillometer (LAS), and converting these observations into evapotranspiration rates. Latent heat fluxes are obtained through the energy balance equation using a series of sensible heat fluxes measured with a LAS over a distance of 9.5 km in the catchment, and point measurements of net radiation (R-n) and ground heat flux (G) upscaled to catchment average through the use of TOPLATS, a physically based land surface model. The resulting LE-values are then compared to results from the remote sensing based surface energy balance algorithm ETLook and the land surface model. Firstly, the performance of ETLook for the energy balance terms has been assessed at the point scale and at the catchment scale. Secondly, consistency between daily evapotranspiration rates from ETLook, TOPLATS and LAS is shown

    Foreword

    Get PDF

    Persistence of perfluoroalkylated substances in closed bottle tests with municipal sewage sludge

    Get PDF
    Background, aim, and scope Perfluoroalkylated substances (PFAS) are chemicals with completely fluorinated alkyl chains. The specific properties of the F-C bond give PFAS a high stability and make them very useful in a wide range of applications. PFAS also pose a potential risk to the environment and humans because they have been recently characterized as persistent, bioaccumulative, and toxic. The objective of this work is to study the bacterial degradation of PFAS under aerobic and anaerobic conditions in municipal sewage sludge as a contribution toward understanding their environmental fate and behavior. Materials and methods Bacterial communities from sewage sludge were exposed to a mixture of PFAS under aerobic or anaerobic conditions. Individual PFAS concentrations were determined in the experiment media at different exposure times using liquid chromatography-mass spectrometry analysis after extraction with solid-phase extraction. Results The PFAS analyses of samples of sludge showed repeatable replicate results, allowing a reliable quantification of the different groups of PFAS analyzed. No conclusive evidence for PFAS degradation was observed under the experimental conditions tested in this work. Reduction in concentrations, however, was observed for some PFAS in sludge under aerobic conditions. Discussion The largest concentration decrease occurred for the fluorotelomer alcohols (FTOHs), especially for the 8:2 FTOH, which have been described as biodegradable in the literature. However, this concentration decrease could be due to different causes: sorption to glass, septa, or matrix components, as well as bacterial activity. Therefore, it is not certain that biodegradation occurred. Conclusions PFAS are very recalcitrant chemicals, especially when fully fluorinated. Although some decreases in concentration have been observed for some PFAS, such as the FTOHs, there is no conclusive evidence for biodegradation. It can be concluded that the PFAS tested in these experiments are non-biodegradable under these experimental conditions. Recommendations and perspectives Since the presence of PFAS is ubiquitous in the environment and they can be toxic, more research is needed in this field to elucidate which PFAS are susceptible to biodegradation, the conditions required for biodegradation, and the possible routes followed. A possible inhibitory effect of PFAS on bacteria, the threshold concentrations, and conditions of inhibition should also be investigated
    • …
    corecore