30 research outputs found

    Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines

    Get PDF
    The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM) and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways

    Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses

    No full text
    Early in postnatal development, glutamatergic synapses transmit primarily through NMDA receptors. As development progresses, synapses acquire AMPA receptor function. The molecular basis of these physiological observations is not known. Here we examined single excitatory synapses with immunogold electron-microscopic analysis of AMPA and NMDA receptors along with electrophysiological measurements. Early in postnatal development, a significant fraction of excitatory synapses had NMDA receptors and lacked AMPA receptors. As development progressed, synapses acquired AMPA receptors with little change in NMDA receptor number. Thus, synapses with NMDA receptors but no AMPA receptors can account for the electrophysiologically observed 'silent synapse'

    Spine growth precedes synapse formation in the adult neocortex in vivo

    No full text
    Dendritic spines appear and disappear in an experience-dependent manner. Although some new spines have been shown to contain synapses, little is known about the relationship between spine addition and synapse formation, the relative time course of these events, or whether they are coupled to de novo growth of axonal boutons. We imaged dendrites in barrel cortex of adult mice over 1 month, tracking gains and losses of spines. Using serial section electron microscopy, we analyzed the ultrastructure of spines and associated boutons. Spines reconstructed shortly after they appeared often lacked synapses, whereas spines that persisted for 4 d or more always had synapses. New spines had a large surface-to-volume ratio and preferentially contacted boutons with other synapses. In some instances, two new spines contacted the same axon. Our data show that spine growth precedes synapse formation and that new synapses form preferentially onto existing boutons
    corecore