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and where extracellular stimuli can interact with GPCR 
ligand binding domains. Recently, however, numerous 
GPCRs have also been found to be associated with vari-
ous intracellular membranes where, in certain cases, they 
activate intracellular signaling machinery leading to unique 
functional responses [1–11]. One such receptor is the 
metabotropic glutamate receptor, mGluR5, which is highly 
expressed on intracellular membranes including the ER and 
nuclear membranes throughout the CNS [12, 13]. Endog-
enous nuclear mGluR5 couples to Gq and PLC to generate 
IP3-mediated Ca2+ release within the nucleus and activation 
of intracellular mGluR5 generates unique Ca2+ responses 
as well as downstream signaling cascades distinct from cell 
surface counterparts, [14, 15]. These observations and those 
by others challenge the notion that cells only interact with 
their environment at the plasma membrane to bring about 
long term changes.

The question arises then as to what ligand activates 
intracellular mGluR5 and mechanistically how activation 
is achieved. The most parsimonious answer is that as the 
natural ligand, glutamate itself may activate intracellular 
mGluR5. Glutamate uptake is mediated by at least five 
sodium-dependent transporter proteins that are present on 
glial and neuronal cells as well as the chloride-dependent 
cystine-glutamate exchanger [16–21]. Previous data show 
that both of these uptake systems are responsible for trans-
porting glutamate into striatal, hippocampal and/or spinal 
cord dorsal horn neurons to activate mGluR5 [13, 22–24]. 
Conditions that block the transporters (i.e., chloride-free 
buffers and the compound l-cystine for the cystine/gluta-
mate exchanger; sodium free buffers and the compound, 
threo-β-benzyloxyaspartate for sodium-dependent excit-
atory amino acid transporters) reduce agonist uptake in 
mGluR5-expressing neurons [13, 22–24]. Moreover, 
uptake of radiolabeled quisqualate, an mGluR5 agonist, and 
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unique signaling effects. Previously we have shown that gluta-
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to activate cell surface mGluR5; and uncaging caged gluta-
mate within neurons can directly activate the receptor. Thus 
these studies further the concept that glutamate itself serves 
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Introduction

Signal transduction from G protein coupled receptors 
(GPCRs) has traditionally been thought to emanate from the 
cell surface where many signaling complexes are clustered 
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imaged and quantitated as described [13, 15, 26]. Glutamate 
(Sigma-Aldrich, St. Louis, MO) was added at various con-
centrations in the presence of D-(-)-2-Amino-5-phosphono-
pentanoic acid (APV, NMDA receptor antagonist, 100 μM, 
Tocris); 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX, 
AMPA/Kainate receptor antagonist, 20 μM, Tocris); (2S)-
2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-
9-yl) propanoic acid (LY341495, Group 2/3 mGluR 
antagonist, 100 nM, Tocris); and 7-(Hydroxyimino)
cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPC-
COEt, mGluR1 antagonist, 20 μM, Tocris) to detect mGluR5 
specific Ca2+ responses.

Fluorescence-Based Ca2+ Flux Assay with Microplate 
Reader

Primary striatal cultures (Div11–15) plated in 96-well plates 
were loaded with 1 μM Fura-2 AM (Molecular Probes) for 
30 min at 37 °C and washed with Hanks’ balanced salt solu-
tion (HBSS). The cells were then preincubated with APV 
(100 μM), CNQX (20 μM), LY341495 (100 nM), CPCCOEt 
(20 μM), and the impermeable, nontransported mGluR5 
antagonist 3-[(1S)-1-amino-1-carboxy-2-(9H-thioxanthen-
9-yl)ethyl]cyclobutane-1-carboxylic acid, (LY393053, 
20 μM, Eli Lilly, Indianapolis, IN) in HBSS for 20 min at 
37 °C prior to measure intracellular mGluR5 specific Ca2+ 
flux. Fura-2 fluorescence was measured using a BioTek™ 
Synergy™ H4 Hybrid Microplate Reader (BioTek, Win-
ooski, VT). The baseline 340/380 nm excitation ratio for 
fura-2 was collected for 5 s before injecting various concen-
tration of glutamate. Data were collected for an additional 
30 s and then analyzed using Biotek’s Gen5 analysis soft-
ware. The dose-response curves were fit using the GraphPad 
Prism 3.0 program (Graphpad Software, San Diego, CA).

Caged Glutamate Experiments

DIV11–15 striatal cultures were loaded with Oregon green 
BAPTA-1 AM (Molecular Probes, Eugene, OR) as described 
[13]. Cells were microinjected with fluoro-ruby (3.2 mg/
ml, Molecular Probes) and 20 mM 4-Methoxy-7-nitroin-
dolinyl-caged-l-glutamate (MNI-caged-glutamate, Tocris, 
Avonmouth, Bristol, United Kingdom) using the single cell 
electroporator, Axoporator 800A (Molecular Devises, Silicon 
Valley, CA). Alternatively, MNI-caged glutamate was bath 
applied to the cells at a concentration of 200 μM. Cells were 
kept at 37 °C and imaged on an Olympus FluoView™ FV1000 
confocal microscope with a SIM scanner. Photo-uncaging 
was performed using 405 nm laser with Tornado scanning 
within the region of interest (ROI) for 500 ms. Where indi-
cated, the following antagonists were used at the indicated 
concentration: APV (100 μM); CNQX (20 μM); LY341495 
(100 nM); CPCCOEt (20 μM), LY393053 (20 μM) and 

glutamate is also observed in isolated nuclei, which can be 
blocked with chloride-free buffers or by applying the same 
transporter blockers. Thus, 90–95 % of all ligand-induced 
intracellular responses can be accounted for by these ligand 
transport processes [13, 22–24].

Besides mechanisms by which glutamate can enter the cell, 
another limitation to the notion that endogenous ligand can 
activate intracellular mGluR5 is the idea that cytoplasmic glu-
tamate concentrations are in the mM range. Indeed, 10 mM is 
frequently used as the concentration of cytoplasmic glutamate 
with levels ranging up to 100–200 mM within vesicles [25]. If 
cytoplasmic glutamate concentrations are indeed 10 mM then 
an intracellular glutamate receptor would be maximally acti-
vated or possibly desensitized long before a new bolus of glu-
tamate entered the cell. To address these issues we have used 
cellular, optical and molecular techniques to determine the (1) 
intracellular localization of glutamate; (2) concentrations nec-
essary to activate cell surface and intracellular mGluR5; and 
(3) the effects of uncaging caged glutamate within neurons.

Materials and Methods

Cell Culture and Transfection

Primary cultures of striatal neurons were prepared from post-
natal day 1 rat pups as previously described [13]. The cells 
were plated onto 12-mm poly-d-lysine-coated glass cover-
slips (60,000/coverslip) for immunostaining or Ca2+ imag-
ing. Cells were cultured in humidified air with 5 % CO2 at 
37 °C for 11–15 days before use. For experiments using the 
microplate reader, cultures were plated at 40,000 cells per 
well in black-walled, clear-bottomed 96-well plates and then 
cultured as above. Striatal cultures were transfected with 
plasmid mito-eYFP (gift from Dr. Ian Reynolds; Department 
of Pharmacology, University of Pittsburgh, Pittsburgh, Penn-
sylvania) using lipofectamine 2000 (Invitrogen, Carlsbad, 
CA) on DIV 9 and then immunostained on DIV 10.

Immunocytochemistry

Striatal cultures were fixed, blocked, and incubated as 
described [13]. Primary antibodies include mouse anti-
glutamate (1:5000; ImmunoStar, Inc., Hudson, WI) and 
goat anti-HSP60 (1:100; Santa Cruz Biotechnology, Santa 
Cruz, CA). Secondary antibodies include goat anti-mouse 
Cy3 and donkey anti-goat Alexa 488 (1:300, Jackson Immu-
noResearch, West Grove, PA).

Fluorescent Measurements of Intracellular Ca2+

DIV 11–15 striatal neurons grown on coverslips were loaded 
with Ca2+ fluorophore Oregon Green 488 BAPTA-1 AM, 

Neurochem Res (2017) 42:166–172 167

123



neurons, we transfected cultures with mito-YFP to label 
mitochondria and then fixed and stained for glutamate. In 
support of EM studies showing anti-glutamate immuno-
gold particles over mitochondria [30], immunofluorescence 
showed anti-glutamate co-localized with mito-YFP in stria-
tal cell bodies and processes (Fig. 1a). In addition, cultures 
stained with HSP60, a marker of mitochondria as well as 
anti-glutamate also showed co-localization (Fig. 1b). Thus 
the majority of immunoreactive glutamate within these 
GABA-ergic neurons is compartmentalized in mitochondria.

“Location” Bias Apparent in Receptor-Mediated  
Ca2+ Responses

Earlier studies [15] showed no significant differences in glu-
tamate binding at receptors prepared from striatal plasma 
membrane or intracellular membrane sources. Those stud-
ies, however, did not address location-specific receptor 
responses in terms of function. Therefore, we used real 
time Ca2+ imaging to determine half-maximal glutamate 

2-Methyl-6-(phenylethynyl)pyridine (MPEP, 10 μM, Tocris). 
Calcium responses in the ROI and control areas were ana-
lyzed using MetaMorph software (Molecular Devises).

Results

Glutamate is Sequestered in Neuronal Mitochondria

Previous studies using techniques such as 13C-NMR,  
13C- and/or 15N-GC/MS have provided compelling evidence 
that glutamate has many fates within the cell. For example, 
a large proportion of glutamate is taken up by the mitochon-
dria where it is transaminated and serves as a substrate for 
the TCA cycle [27, 28]. Indeed, anti-glutamate immunogold 
electron microscopy studies indicate that particles repre-
senting glutamate are clustered over mitochondria as well 
as the nucleus [29]. We have previously shown that mGluR5 
is highly expressed in GABA-ergic striatal neurons [13]. To 
determine whether glutamate could be visualized in striatal 

Fig. 1 Intracellular glutamate pools are predominantly localized in 
mitochondria. a Glutamate co-localizes with mitochondrial-targeted 
YFP. Cultured striatal neurons were transfected with mito-YFP (green) 
and stained with anti-glutamate (red). b Colocalization of glutamate 

(red) with the mitochondrial marker, HSP60 (green). For a, b magni-
fied images of boxed area in upper panels are shown below (Color 
figure online)
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couple to PLC to induce release of Ca2+ from intracellular 
stores [24]. Here, we used this assay to show that the half 
maximal glutamate concentration for intracellular mGluR5 
is 61.3 ± 20.3 μM (Fig. 2d). Presumably, the increased EC50 
value associated with intracellular mGluR5 reflects proper-
ties of the uptake mechanisms involved in glutamate trans-
port into the cell [13, 15]. Collectively, these data show that 
intracellular, striatal mGluR5 can function independently 
of signals originating at the cell surface and thus plays a 
dynamic role in mobilizing Ca2+ in a specific, localized 
manner. In addition these data emphasize that intracellular 
receptors can be activated with glutamate concentrations far 
lower than the putative intracellular cytoplasmic concentra-
tion, consistent with the notion that glutamate is sequestered 
in the cell.

Selective Uncaging of Glutamate Activates Intracellular 
mGluR5 Within the Cell and in the Dendrites

To further demonstrate that glutamate activates intracellu-
lar mGluR5, we electroporated caged glutamate (MNI-Glu) 
into individual neurons along with fluoro-ruby to tag recipi-
ent cells. Following electroporation, cultures were loaded 

concentrations associated with the plasma membrane or 
intracellular mGluR5-mediated Ca2+ responses. As shown 
previously [15], glutamate-mediated Ca2+ changes con-
sisted of two phases, an initial rapid rise followed by a sus-
tained elevation (Fig. 2a, red trace). Both sets of responses 
were terminated by the addition of the permeable mGluR5 
antagonist, MPEP, whereas cultures pretreated with the 
impermeable, nontransported antagonist LY393053, only 
exhibited a sustained Ca2+ response pattern (not shown). As 
shown previously, LY393053 by itself had no effect on Ca2+ 
responses in striatal cultures [13–15]. In contrast, addition 
of the nontransported agonist, DHPG, led to a rapid tran-
sient Ca2+ peak (Fig. 2a, blue trace), which could be blocked 
by LY393053 (not shown). The half-maximal glutamate 
concentration to stimulate a rapid transient Ca2+ response 
(cell surface) is 2.21 ± 0.8 μM (Fig. 2b) whereas the half-
maximal concentration to induce a sustained plateau Ca2+ 
response (intracellular; [15]) is 21.4 ± 4.0 μM (Fig. 2c).

To extend these results, we used a fluorescence-based 
Ca2+ flux plate-reader assay in which cells were loaded with 
the ratiometric Ca2+ indicator Fura-2 AM before Ca2+ flux 
measurement. Previously we used this assay system to show 
that mGluR5-expressing spinal cord dorsal horn neurons 

Fig. 2 Half-maximal glutamate concentrations associated with intra-
cellular mGluR5-mediated Ca2+ responses in striatal neurons. a–c DIV 
11–15 striatal neurons grown on coverslips were loaded with Ca2+ flu-
orophore Oregon Green 488 BAPTA-1 AM and imaged. a Glutamate 
dose-dependency in Ca2+ responses; only a single transient peak (blue) 
is observed at glutamate doses below 5 μM whereas both transient and 
sustained peaks (red) are seen with higher glutamate concentrations. b 
The EC50 glutamate concentration to stimulate a rapid transient Ca2+ 
response (cell surface) is 2.21 ± 0.8 μM. Error bars represent SEM. 
(N = 3). c The EC50 glutamate concentration to induce a sustained Ca2+ 

response (intracellular) is 21.4 ± 4.0 μM, Error bars represent SEM. 
(N = 3). d DIV 11–15 striatal neurons plated on 96-well plates were 
loaded with fura-2 AM for Ca2+ flux plate reader assay. The baseline 
340/380 nm excitation ratio for fura-2 was collected for 5 s before 
injecting with various concentrations of glutamate. Data were normal-
ized to a glutamate (2 mM) control maximum. Concentration-response 
curves were generated from the mean data of three experiments. Error 
bars represent SEM. The EC50 glutamate concentration for intracel-
lular mGluR5 is 61.3 ± 20.3 μM (Color figure online)
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in fluorescence whereas the surrounding regions did not 
(Fig. 3c, d). MPEP blocked all Ca2+ responses (not shown). 
These data emphasize the notion that some of the signaling 
originates in the ER, an organelle not easily assayed other 
than using the selective tools described here. Thus akin to 
results in the hippocampus [23], our findings indicate that 
activation of dendritic, intracellular mGluR5 also leads to 
in situ Ca2+ changes with neither input to nor output from 
the cell soma.

Discussion

In addition to functioning as a neurotransmitter, glutamate 
serves many metabolic roles within the cell such as acting 
as a building block for protein synthesis, playing a role in 
energy metabolism, and transferring reducing equivalents 
from the cytoplasm to the mitochondria [31]. Given these 
myriad tasks, it is not surprising that intracellular glutamate 
concentrations are thought to be in the mM range. Contrary 
to this notion, here we show that glutamate is largely com-
partmentalized in mitochondria, at least in striatal neurons. 

with Oregon Green BAPTA-1 AM and preincubated with 
LY393053 as well as ionotropic receptor (NMDA, AMPA, 
and kainate receptors), mGluR1, and Groups 2 and 3 mGluR 
antagonists prior to uncaging a ROI (Fig. 3a). Only neu-
ronal somas subjected to laser-induced photolysis (uncag-
ing) showed mGluR5-mediated Ca2+ changes (Fig. 3b; red 
trace), neuronal somas without uncaging showed no change 
in Ca2+ responses (Fig. 3b; blue trace). These data demon-
strate that releasing glutamate within the cell can activate 
intracellular mGluR5.

Because ultrastructure studies have also shown large 
numbers of mGluR5 gold particles on endoplasmic retic-
ulum (ER) membranes [12], we tested whether mGluR5 
expressed on dendritic ER or endosomal membranes can 
mediate local Ca2+ rises. To do so intracellular receptors 
were pharmacologically isolated by blocking cell surface 
mGluR5 with LY393053 as well as mGluR1, ionotropic and 
Group 2/3 mGluR targets. In addition to the antagonists, the 
extracellular buffer also contained MNI-glutamate which 
was uncaged in an ROI on a striatal dendrite at least 20 μm 
away from the cell body (Fig. 3c). Only the region of the 
dendrite juxtaposed to the uncaging spot exhibited a change 

Fig. 3 Regionally selective uncaging of glutamate in the presence of 
cell surface inhibitors activates intracellular mGluR5 in striatal soma 
(a, b) and dendrites (c, d). a, b Striatal neurons were injected with 
fluoro-ruby and MNI-caged-glutamate. Uncaging of MNI-glutamate 
at a somal ROI induced a Ca2+ rise at the red ROI whereas no Ca2+ 
changes were seen at the blue ROI (N = 5). c, d MNI-caged glutamate 
was bath applied to striatal cultures at a concentration of 200 µM. 

MNI-glutamate was uncaged on a striatal dendrite at the red ROI in 
the presence of LY53 (20 µM), the NMDA receptor blocker APV 
(100 µM), the AMPA/Kainate receptor blocker CNQX (20 µM), the 
mGluR1 blocker CPCCOEt (20 µM) and the Group 2/3 mGluR antag-
onist LY341495 (100 nM). Uncaged glutamate generated a Ca2+ rise at 
the red ROI whereas no Ca2+ changes were seen in a different neurite 
in the same field (white arrows) (N = 10) (Color figure online)
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and regulation of the many enzymes involved in its produc-
tion will also play an important role in receptor activation.
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