6 research outputs found

    Safety of liver resection and effect on quality of life in patients with benign hepatic disease: Single center experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although liver resection has long been established for selected patients with benign hepatic disease, the success of surgical treatment of these patients cannot be evaluated exclusively through postoperative morbidity and mortality. Therefore, the aim of the study was to prove the safety of liver resection in the treatment of benign liver tumors and to evaluate the effect of surgical treatment on the patients' qauality of life.</p> <p>Methods</p> <p>A total of 146 patients who underwent liver resection because of benign liver tumors were included in this study. Postoperative outcome was assessed and patients evaluated their quality of life before surgery and at the present time using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core-30 (QLQ C-30).</p> <p>Results</p> <p>The rate of serious (> grade 2) complications was 4.1% with no postoperative death. The quality of life assessment revealed an overall improvement of general health status after resection (0.7 vs. 0.56, p < 0.001) and additionally a significant reduction of 6 out of 9 symptoms. Furthermore, compelling benefits in the patients' social and emotional coping could be detected after surgery.</p> <p>Conclusions</p> <p>Liver resection for benign liver disease is a safe procedure and leads to a significant improvement of quality of life in selected patients.</p

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    The potential of hyperspectral images and partial least square regression for predicting total carbon, total nitrogen and their isotope composition in forest litterfall samples

    No full text
    Hosseini Bai, S ORCiD: 0000-0001-8646-6423Purpose: The main objective of this study was to examine the potential of using hyperspectral image analysis for prediction of total carbon (TC), total nitrogen (TN) and their isotope composition (δ13C and δ15N) in forest leaf litterfall samples. Materials and methods: Hyperspectral images were captured from ground litterfall samples of a natural forest in the spectral range of 400–1700 nm. A partial least-square regression model (PLSR) was used to correlate the relative reflectance spectra with TC, TN, δ13C and δ15N in the litterfall samples. The most important wavelengths were selected using β coefficient, and the final models were developed using the most important wavelengths. The models were, then, tested using an external validation set. Results and discussion: The results showed that the data of TC and δ13C could not be fitted to the PLSR model, possibly due to small variations observed in the TC and δ13C data. The model, however, was fitted well to TN and δ15N. The cross-validation R2cv of the models for TN and δ15N were 0.74 and 0.67 with the RMSEcv of 0.53% and 1.07‰, respectively. The external validation R2ex of the prediction was 0.64 and 0.67, and the RMSEex was 0.53% and 1.19 ‰, for TN and δ15N, respectively. The ratio of performance to deviation (RPD) of the predictions was 1.48 and 1.53, respectively, for TN and δ15N, showing that the models were reliable for the prediction of TN and δ15N in new forest leaf litterfall samples. Conclusions: The PLSR model was not successful in predicting TC and δ13C in forest leaf litterfall samples using hyperspectral data. The predictions of TN and δ15N values in the external litterfall samples were reliable, and PLSR can be used for future prediction. © 2017, Springer-Verlag GmbH Germany
    corecore