10 research outputs found

    The δ subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling

    Get PDF
    Cellular RNA polymerases RNAPs can become trapped on DNA or RNA, threatening genome stability and limiting free enzyme pools, but how RNAP recycling into active states is achieved remains elusive. In Bacillus subtilis, the RNAP amp; 948; subunit and NTPase HelD have been implicated in RNAP recycling. We structurally analyzed Bacillus subtilis RNAP amp; 948; HelD complexes. HelD has two long arms a Gre cleavage factor like coiled coil inserts deep into the RNAP secondary channel, dismantling the active site and displacing RNA, while a unique helical protrusion inserts into the main channel, prying the amp; 946; and amp; 946; amp; 8242; subunits apart and, aided by amp; 948;, dislodging DNA. RNAP is recycled when, after releasing trapped nucleic acids, HelD dissociates from the enzyme in an ATP dependent manner. HelD abundance during slow growth and a dimeric RNAP amp; 948; HelD 2 structure that resembles hibernating eukaryotic RNAP I suggest that HelD might also modulate active enzyme pools in response to cellular cue

    Evolution of scaling emergence in large-scale spatial epidemic spreading

    Get PDF
    Background: Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which is still hardly been clarified. Methodology/Principal Findings: In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States(U.S.) domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. Conclusions/Significance: The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.Comment: 24pages, 7figures, accepted by PLoS ON

    Enzymatic oligomerization and polymerization of arylamines: state of the art and perspectives

    Get PDF
    The literature concerning the oxidative oligomerization and polymerization of various arylamines, e.g., aniline, substituted anilines, aminonaphthalene and its derivatives, catalyzed by oxidoreductases, such as laccases and peroxidases, in aqueous, organic, and mixed aqueous organic monophasic or biphasic media, is reviewed. An overview of template-free as well as template-assisted enzymatic syntheses of oligomers and polymers of arylamines is given. Special attention is paid to mechanistic aspects of these biocatalytic processes. Because of the nontoxicity of oxidoreductases and their high catalytic efficiency, as well as high selectivity of enzymatic oligomerizations/polymerizations under mild conditions-using mainly water as a solvent and often resulting in minimal byproduct formation-enzymatic oligomerizations and polymerizations of arylamines are environmentally friendly and significantly contribute to a "green'' chemistry of conducting and redox-active oligomers and polymers. Current and potential future applications of enzymatic polymerization processes and enzymatically synthesized oligo/polyarylamines are discussed

    Advances in bacterial promoter recognition and its control by factors that do not bind DNA

    No full text

    Enzymatic oligomerization and polymerization of arylamines: state of the art and perspectives

    No full text
    corecore