6,742 research outputs found

    Light Stop NLSPs at the Tevatron and LHC

    Full text link
    How light can the stop be given current experimental constraints? Can it still be lighter than the top? In this paper, we study this and related questions in the context of gauge-mediated supersymmetry breaking, where a stop NLSP decays into a W, b and gravitino. Focusing on the case of prompt decays, we simulate several existing Tevatron and LHC analyses that would be sensitive to this scenario, and find that they allow the stop to be as light as 150 GeV, mostly due to the large top production background. With more data, the existing LHC analyses will be able to push the limit up to at least 180 GeV. We hope this work will motivate more dedicated experimental searches for this simple scenario, in which, for most purposes, the only free parameters are the stop mass and lifetime.Comment: 31 pages, 11 figures; v2: added minor clarifications and reference

    Constraints on Non-Newtonian Gravity from Recent Casimir Force Measurements

    Full text link
    Corrections to Newton's gravitational law inspired by extra dimensional physics and by the exchange of light and massless elementary particles between the atoms of two macrobodies are considered. These corrections can be described by the potentials of Yukawa-type and by the power-type potentials with different powers. The strongest up to date constraints on the corrections to Newton's gravitational law are reviewed following from the E\"{o}tvos- and Cavendish-type experiments and from the measurements of the Casimir and van der Waals force. We show that the recent measurements of the Casimir force gave the possibility to strengthen the previously known constraints on the constants of hypothetical interactions up to several thousand times in a wide interaction range. Further strengthening is expected in near future that makes Casimir force measurements a prospective test for the predictions of fundamental physical theories.Comment: 20 pages, crckbked.cls is used, to be published in: Proceedings of the 18th Course of the School on Cosmology and Gravitation: The Gravitational Constant. Generalized Gravitational Theories and Experiments (30 April- 10 May 2003, Erice). Ed. by G. T. Gillies, V. N. Melnikov and V. de Sabbata, 20pp. (Kluwer, in print, 2003

    Direct Evidence for Dominant Bond-directional Interactions in a Honeycomb Lattice Iridate Na2IrO3

    Get PDF
    Heisenberg interactions are ubiquitous in magnetic materials and have been prevailing in modeling and designing quantum magnets. Bond-directional interactions offer a novel alternative to Heisenberg exchange and provide the building blocks of the Kitaev model, which has a quantum spin liquid (QSL) as its exact ground state. Honeycomb iridates, A2IrO3 (A=Na,Li), offer potential realizations of the Kitaev model, and their reported magnetic behaviors may be interpreted within the Kitaev framework. However, the extent of their relevance to the Kitaev model remains unclear, as evidence for bond-directional interactions remains indirect or conjectural. Here, we present direct evidence for dominant bond-directional interactions in antiferromagnetic Na2IrO3 and show that they lead to strong magnetic frustration. Diffuse magnetic x-ray scattering reveals broken spin-rotational symmetry even above Neel temperature, with the three spin components exhibiting nano-scale correlations along distinct crystallographic directions. This spin-space and real-space entanglement directly manifests the bond-directional interactions, provides the missing link to Kitaev physics in honeycomb iridates, and establishes a new design strategy toward frustrated magnetism.Comment: Nature Physics, accepted (2015

    Early (and Later) LHC Search Strategies for Broad Dimuon Resonances

    Get PDF
    Resonance searches generally focus on narrow states that would produce a sharp peak rising over background. Early LHC running will, however, be sensitive primarily to broad resonances. In this paper we demonstrate that statistical methods should suffice to find broad resonances and distinguish them from both background and contact interactions over a large range of previously unexplored parameter space. We furthermore introduce an angular measure we call ellipticity, which measures how forward (or backward) the muon is in eta, and allows for discrimination between models with different parity violation early in the LHC running. We contrast this with existing angular observables and demonstrate that ellipticity is superior for discrimination based on parity violation, while others are better at spin determination.Comment: 31 pages, 19 figures. References added, minor modifications made to section

    Tissue Engineering in Dentistry.

    Get PDF
    Objectives of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry. Data The authors used “PUBMED” to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., “tissue engineering”, “approaches”, “strategies” “dentistry”, “dental stem cells”, “dentino-pulp complex”, “guided tissue regeneration”, “whole tooth”, “TMJ”, “condyle”, “salivary glands”, and “oral mucosa”. Sources Abstracts and full text articles were used to identify causes of craniofacial tissue loss, different approaches for craniofacial reconstructions, how the tissue engineering emerges, different strategies of tissue engineering, biomaterials employed for this purpose, the major attempts to engineer different dental structures, finally challenges and future of tissue engineering in dentistry. Study selection Only those articles that dealt with the tissue engineering in dentistry were selected. Conclusions There have been a recent surge in guided tissue engineering methods to manage periodontal diseases beyond the traditional approaches. However, the predictable reconstruction of the innate organisation and function of whole teeth as well as their periodontal structures remains challenging. Despite some limited progress and minor successes, there remain distinct and important challenges in the development of reproducible and clinically safe approaches for oral tissue repair and regeneration. Clearly, there is a convincing body of evidence which confirms the need for this type of treatment, and public health data worldwide indicates a more than adequate patient resource. The future of these therapies involving more biological approaches and the use of dental tissue stem cells is promising and advancing. Also there may be a significant interest of their application and wider potential to treat disorders beyond the craniofacial region. Clinical Significance Considering the interests of the patients who could possibly be helped by applying stem cell-based therapies should be carefully assessed against current ethical concerns regarding the moral status of the early embryo

    Evolutionary Toggling of Vpx/Vpr Specificity Results in Divergent Recognition of the Restriction Factor SAMHD1

    Get PDF
    SAMHD1 is a host restriction factor that blocks the ability of lentiviruses such as HIV-1 to undergo reverse transcription in myeloid cells and resting T-cells. This restriction is alleviated by expression of the lentiviral accessory proteins Vpx and Vpr (Vpx/Vpr), which target SAMHD1 for proteasome-mediated degradation. However, the precise determinants within SAMHD1 for recognition by Vpx/Vpr remain unclear. Here we show that evolution of Vpx/Vpr in primate lentiviruses has caused the interface between SAMHD1 and Vpx/Vpr to alter during primate lentiviral evolution. Using multiple HIV-2 and SIV Vpx proteins, we show that Vpx from the HIV-2 and SIVmac lineage, but not Vpx from the SIVmnd2 and SIVrcm lineage, require the C-terminus of SAMHD1 for interaction, ubiquitylation, and degradation. On the other hand, the N-terminus of SAMHD1 governs interactions with Vpx from SIVmnd2 and SIVrcm, but has little effect on Vpx from HIV-2 and SIVmac. Furthermore, we show here that this difference in SAMHD1 recognition is evolutionarily dynamic, with the importance of the N- and C-terminus for interaction of SAMHD1 with Vpx and Vpr toggling during lentiviral evolution. We present a model to explain how the head-to-tail conformation of SAMHD1 proteins favors toggling of the interaction sites by Vpx/Vpr during this virus-host arms race. Such drastic functional divergence within a lentiviral protein highlights a novel plasticity in the evolutionary dynamics of viral antagonists for restriction factors during lentiviral adaptation to its hosts. © 2013 Fregoso et al

    Layer thickness dependence of the current induced effective field vector in Ta|CoFeB|MgO

    Full text link
    The role of current induced effective magnetic field in ultrathin magnetic heterostructures is increasingly gaining interest since it can provide efficient ways of manipulating magnetization electrically. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we show vector measurements of the current induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field shows significant dependence on the Ta and CoFeB layers' thickness. In particular, 1 nm thickness variation of the Ta layer can result in nearly two orders of magnitude difference in the effective field. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects that contribute to the effective field. The relative size of the effective field vector components, directed transverse and parallel to the current flow, varies as the Ta thickness is changed. Our results illustrate the profound characteristics of just a few atomic layer thick metals and their influence on magnetization dynamics
    • …
    corecore