6,742 research outputs found
Light Stop NLSPs at the Tevatron and LHC
How light can the stop be given current experimental constraints? Can it
still be lighter than the top? In this paper, we study this and related
questions in the context of gauge-mediated supersymmetry breaking, where a stop
NLSP decays into a W, b and gravitino. Focusing on the case of prompt decays,
we simulate several existing Tevatron and LHC analyses that would be sensitive
to this scenario, and find that they allow the stop to be as light as 150 GeV,
mostly due to the large top production background. With more data, the existing
LHC analyses will be able to push the limit up to at least 180 GeV. We hope
this work will motivate more dedicated experimental searches for this simple
scenario, in which, for most purposes, the only free parameters are the stop
mass and lifetime.Comment: 31 pages, 11 figures; v2: added minor clarifications and reference
Constraints on Non-Newtonian Gravity from Recent Casimir Force Measurements
Corrections to Newton's gravitational law inspired by extra dimensional
physics and by the exchange of light and massless elementary particles between
the atoms of two macrobodies are considered. These corrections can be described
by the potentials of Yukawa-type and by the power-type potentials with
different powers. The strongest up to date constraints on the corrections to
Newton's gravitational law are reviewed following from the E\"{o}tvos- and
Cavendish-type experiments and from the measurements of the Casimir and van der
Waals force. We show that the recent measurements of the Casimir force gave the
possibility to strengthen the previously known constraints on the constants of
hypothetical interactions up to several thousand times in a wide interaction
range. Further strengthening is expected in near future that makes Casimir
force measurements a prospective test for the predictions of fundamental
physical theories.Comment: 20 pages, crckbked.cls is used, to be published in: Proceedings of
the 18th Course of the School on Cosmology and Gravitation: The Gravitational
Constant. Generalized Gravitational Theories and Experiments (30 April- 10
May 2003, Erice). Ed. by G. T. Gillies, V. N. Melnikov and V. de Sabbata,
20pp. (Kluwer, in print, 2003
Direct Evidence for Dominant Bond-directional Interactions in a Honeycomb Lattice Iridate Na2IrO3
Heisenberg interactions are ubiquitous in magnetic materials and have been
prevailing in modeling and designing quantum magnets. Bond-directional
interactions offer a novel alternative to Heisenberg exchange and provide the
building blocks of the Kitaev model, which has a quantum spin liquid (QSL) as
its exact ground state. Honeycomb iridates, A2IrO3 (A=Na,Li), offer potential
realizations of the Kitaev model, and their reported magnetic behaviors may be
interpreted within the Kitaev framework. However, the extent of their relevance
to the Kitaev model remains unclear, as evidence for bond-directional
interactions remains indirect or conjectural. Here, we present direct evidence
for dominant bond-directional interactions in antiferromagnetic Na2IrO3 and
show that they lead to strong magnetic frustration. Diffuse magnetic x-ray
scattering reveals broken spin-rotational symmetry even above Neel temperature,
with the three spin components exhibiting nano-scale correlations along
distinct crystallographic directions. This spin-space and real-space
entanglement directly manifests the bond-directional interactions, provides the
missing link to Kitaev physics in honeycomb iridates, and establishes a new
design strategy toward frustrated magnetism.Comment: Nature Physics, accepted (2015
Signal transducer and activator of transcription 3-mediated CD133 up-regulation contributes to promotion of hepatocellular carcinoma
published_or_final_versio
Early (and Later) LHC Search Strategies for Broad Dimuon Resonances
Resonance searches generally focus on narrow states that would produce a
sharp peak rising over background. Early LHC running will, however, be
sensitive primarily to broad resonances. In this paper we demonstrate that
statistical methods should suffice to find broad resonances and distinguish
them from both background and contact interactions over a large range of
previously unexplored parameter space. We furthermore introduce an angular
measure we call ellipticity, which measures how forward (or backward) the muon
is in eta, and allows for discrimination between models with different parity
violation early in the LHC running. We contrast this with existing angular
observables and demonstrate that ellipticity is superior for discrimination
based on parity violation, while others are better at spin determination.Comment: 31 pages, 19 figures. References added, minor modifications made to
section
Tissue Engineering in Dentistry.
Objectives
of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry.
Data
The authors used “PUBMED” to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., “tissue engineering”, “approaches”, “strategies” “dentistry”, “dental stem cells”, “dentino-pulp complex”, “guided tissue regeneration”, “whole tooth”, “TMJ”, “condyle”, “salivary glands”, and “oral mucosa”.
Sources
Abstracts and full text articles were used to identify causes of craniofacial tissue loss, different approaches for craniofacial reconstructions, how the tissue engineering emerges, different strategies of tissue engineering, biomaterials employed for this purpose, the major attempts to engineer different dental structures, finally challenges and future of tissue engineering in dentistry.
Study selection
Only those articles that dealt with the tissue engineering in dentistry were selected.
Conclusions
There have been a recent surge in guided tissue engineering methods to manage periodontal diseases beyond the traditional approaches. However, the predictable reconstruction of the innate organisation and function of whole teeth as well as their periodontal structures remains challenging. Despite some limited progress and minor successes, there remain distinct and important challenges in the development of reproducible and clinically safe approaches for oral tissue repair and regeneration. Clearly, there is a convincing body of evidence which confirms the need for this type of treatment, and public health data worldwide indicates a more than adequate patient resource. The future of these therapies involving more biological approaches and the use of dental tissue stem cells is promising and advancing. Also there may be a significant interest of their application and wider potential to treat disorders beyond the craniofacial region.
Clinical Significance
Considering the interests of the patients who could possibly be helped by applying stem cell-based therapies should be carefully assessed against current ethical concerns regarding the moral status of the early embryo
Evolutionary Toggling of Vpx/Vpr Specificity Results in Divergent Recognition of the Restriction Factor SAMHD1
SAMHD1 is a host restriction factor that blocks the ability of lentiviruses such as HIV-1 to undergo reverse transcription in myeloid cells and resting T-cells. This restriction is alleviated by expression of the lentiviral accessory proteins Vpx and Vpr (Vpx/Vpr), which target SAMHD1 for proteasome-mediated degradation. However, the precise determinants within SAMHD1 for recognition by Vpx/Vpr remain unclear. Here we show that evolution of Vpx/Vpr in primate lentiviruses has caused the interface between SAMHD1 and Vpx/Vpr to alter during primate lentiviral evolution. Using multiple HIV-2 and SIV Vpx proteins, we show that Vpx from the HIV-2 and SIVmac lineage, but not Vpx from the SIVmnd2 and SIVrcm lineage, require the C-terminus of SAMHD1 for interaction, ubiquitylation, and degradation. On the other hand, the N-terminus of SAMHD1 governs interactions with Vpx from SIVmnd2 and SIVrcm, but has little effect on Vpx from HIV-2 and SIVmac. Furthermore, we show here that this difference in SAMHD1 recognition is evolutionarily dynamic, with the importance of the N- and C-terminus for interaction of SAMHD1 with Vpx and Vpr toggling during lentiviral evolution. We present a model to explain how the head-to-tail conformation of SAMHD1 proteins favors toggling of the interaction sites by Vpx/Vpr during this virus-host arms race. Such drastic functional divergence within a lentiviral protein highlights a novel plasticity in the evolutionary dynamics of viral antagonists for restriction factors during lentiviral adaptation to its hosts. © 2013 Fregoso et al
Layer thickness dependence of the current induced effective field vector in Ta|CoFeB|MgO
The role of current induced effective magnetic field in ultrathin magnetic
heterostructures is increasingly gaining interest since it can provide
efficient ways of manipulating magnetization electrically. Two effects, known
as the Rashba spin orbit field and the spin Hall spin torque, have been
reported to be responsible for the generation of the effective field. However,
quantitative understanding of the effective field, including its direction with
respect to the current flow, is lacking. Here we show vector measurements of
the current induced effective field in Ta|CoFeB|MgO heterostructrures. The
effective field shows significant dependence on the Ta and CoFeB layers'
thickness. In particular, 1 nm thickness variation of the Ta layer can result
in nearly two orders of magnitude difference in the effective field. Moreover,
its sign changes when the Ta layer thickness is reduced, indicating that there
are two competing effects that contribute to the effective field. The relative
size of the effective field vector components, directed transverse and parallel
to the current flow, varies as the Ta thickness is changed. Our results
illustrate the profound characteristics of just a few atomic layer thick metals
and their influence on magnetization dynamics
- …