204 research outputs found
Band structure engineering of carbon nitride hybrid photocatalysts for CO2 reduction in aqueous solutions
Through the co-polymerisation of dicyandiamide and barbituric acid precursors, a series of visible light active carbon nitride photocatalysts has been prepared and characterized, and their photocatalytic activity has been evaluated. Structural and electronic characterisation has enabled variations in observed activity towards water splitting and CO2 reduction to be understood, both in the presence and absence of the iron porphyrin co-catalyst Feiii tetra(4-carboxylphenyl)porphyrin (FeTCPP). A combination of the most active carbon nitride catalyst using 5 wt% barbituric acid and FeTCPP provides a hybrid system where the alignment of band structure with appropriate reduction potentials and enhanced carrier lifetimes is capable of CO2 reduction in an aqueous solution with >60% selectivity for CO production. This study is one of only a few that achieves selective CO2 reduction using a hybrid molecular catalyst-carbon nitride photocatalyst in aqueous solution
Guest charges in an electrolyte: renormalized charge, long- and short-distance behavior of the electric potential and density profile
We complement a recent exact study by L. Samaj on the properties of a guest
charge immersed in a two-dimensional electrolyte with charges . In
particular, we are interested in the behavior of the density profiles and
electric potential created by the charge and the electrolyte, and in the
determination of the renormalized charge which is obtained from the
long-distance asymptotics of the electric potential. In Samaj's previous work,
exact results for arbitrary coulombic coupling were obtained for a
system where all the charges are points, provided and .
Here, we first focus on the mean field situation which we believe describes
correctly the limit but large. In this limit we can
study the case when the guest charge is a hard disk and its charge is above the
collapse value . We compare our results for the renormalized charge
with the exact predictions and we test on a solid ground some conjectures of
the previous study. Our study shows that the exact formulas obtained by Samaj
for the renormalized charge are not valid for , contrary to a
hypothesis put forward by Samaj. We also determine the short-distance
asymptotics of the density profiles of the coions and counterions near the
guest charge, for arbitrary coulombic coupling. We show that the coion density
profile exhibit a change of behavior if the guest charge becomes large enough
(). This is interpreted as a first step of the counterion
condensation (for large coulombic coupling), the second step taking place at
the usual Manning--Oosawa threshold
Association study with Wegener granulomatosis of the human phospholipase Cγ2 gene
BACKGROUND: Wegener Granulomatosis (WG) is a multifactorial disease of yet unknown aetiology characterized by granulomata of the respiratory tract and systemic necrotizing vasculitis. Analyses of candidate genes revealed several associations, e.g. with α(1)-antitrypsin, proteinase 3 and with the HLA-DPB1 locus. A mutation in the abnormal limb mutant 5 (ALI5) mouse in the region coding for the hydrophobic ridge loop 3 (HRL3) of the phospholipaseCγ2 (PLCγ-2) gene, corresponding to human PLCγ-2 exon 27, leads to acute and chronic inflammation and granulomatosis. For that reason, we screened exons 11, 12 and 13 coding for the hydrophobic ridge loop 1 and 2 (HRL1 and 2, respectively) and exon 27 of the PLCγ-2 protein by single strand conformation polymorphism (SSCP), sequencing and PCR/ restriction fragment length polymorphism (RFLP) analyses. In addition, we screened indirectly for disease association via 4 microsatellites with pooled DNA in the PLCγ-2 gene. RESULTS: Although a few polymorphisms in these distinct exons were observed, significant differences in allele frequencies were not identified between WG patients and respective controls. In addition, the microsatellite analyses did not reveal a significant difference between our patient and control cohort. CONCLUSION: This report does not reveal any hints for an involvement of the PLCγ-2 gene in the pathogenesis of WG in our case-control study
Evaluation Method, Dataset Size or Dataset Content: How to Evaluate Algorithms for Image Matching?
Most vision papers have to include some evaluation work in order to demonstrate that the algorithm proposed is an improvement on existing ones. Generally, these evaluation results are presented in tabular or graphical forms. Neither of these is ideal because there is no indication as to whether any performance differences are statistically significant. Moreover, the size and nature of the dataset used for evaluation will obviously have a bearing on the results, and neither of these factors are usually discussed. This paper evaluates the effectiveness of commonly used performance characterization metrics for image feature detection and description for matching problems and explores the use of statistical tests such as McNemar’s test and ANOVA as better alternatives
Perspectives on the Trypanosoma cruzi-host cell receptor interaction
Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets
Characterization of a caspase-3-substrate kinome using an N- and C-terminally tagged protein kinase library produced by a cell-free system
Caspase-3 (CASP3) cleaves many proteins including protein kinases (PKs). Understanding the relationship(s) between CASP3 and its PK substrates is necessary to delineate the apoptosis signaling cascades that are controlled by CASP3 activity. We report herein the characterization of a CASP3-substrate kinome using a simple cell-free system to synthesize a library that contained 304 PKs tagged at their N- and C-termini (NCtagged PKs) and a luminescence assay to report CASP3 cleavage events. Forty-three PKs, including 30 newly identified PKs, were found to be CASP3 substrates, and 28 cleavage sites in 23 PKs were determined. Interestingly, 16 out of the 23 PKs have cleavage sites within 60 residues of their N- or C-termini. Furthermore, 29 of the PKs were cleaved in apoptotic cells, including five that were cleaved near their termini in vitro. In total, approximately 14% of the PKs tested were CASP3 substrates, suggesting that CASP3 cleavage of PKs may be a signature event in apoptotic-signaling cascades. This proteolytic assay method would identify other protease substrates
STROCSS 2021: Strengthening the reporting of cohort, cross-sectional and case-control studies in surgery
Introduction: Strengthening The Reporting Of Cohort Studies in Surgery (STROCSS) guidelines were developed in 2017 in order to improve the reporting quality of observational studies in surgery and updated in 2019. In order to maintain relevance and continue upholding good reporting quality among observational studies in surgery, we aimed to update STROCSS 2019 guidelines. /
Methods: A STROCSS 2021 steering group was formed to come up with proposals to update STROCSS 2019 guidelines. An expert panel of researchers assessed these proposals and judged whether they should become part of STROCSS 2021 guidelines or not, through a Delphi consensus exercise. /
Results: 42 people (89%) completed the DELPHI survey and hence participated in the development of STROCSS 2021 guidelines. All items received a score between 7 and 9 by greater than 70% of the participants, indicating a high level of agreement among the DELPHI group members with the proposed changes to all the items. /
Conclusion: We present updated STROCSS 2021 guidelines to ensure ongoing good reporting quality among observational studies in surgery
Characterization of a caspase-3-substrate kinome using an N- and C-terminally tagged protein kinase library produced by a cell-free system
Caspase-3 (CASP3) cleaves many proteins including protein kinases (PKs). Understanding the relationship(s) between CASP3 and its PK substrates is necessary to delineate the apoptosis signaling cascades that are controlled by CASP3 activity. We report herein the characterization of a CASP3-substrate kinome using a simple cell-free system to synthesize a library that contained 304 PKs tagged at their N- and C-termini (NCtagged PKs) and a luminescence assay to report CASP3 cleavage events. Forty-three PKs, including 30 newly identified PKs, were found to be CASP3 substrates, and 28 cleavage sites in 23 PKs were determined. Interestingly, 16 out of the 23 PKs have cleavage sites within 60 residues of their N- or C-termini. Furthermore, 29 of the PKs were cleaved in apoptotic cells, including five that were cleaved near their termini in vitro. In total, approximately 14% of the PKs tested were CASP3 substrates, suggesting that CASP3 cleavage of PKs may be a signature event in apoptotic-signaling cascades. This proteolytic assay method would identify other protease substrates
Heritable Epigenetic Variation among Maize Inbreds
Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays), an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs). Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic variation, may contribute to complex trait variation
- …